Variational Bayes and the Principal Component Analysis Coupled With Bayesian Regulation Backpropagation Network to Retrieve Total Precipitable Water (TPW) From GCOM-W1/AMSR2

被引:3
作者
Islam, Tanvir [1 ,2 ]
Srivastava, Prashant K. [3 ,4 ]
Petropoulos, George P. [5 ]
机构
[1] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA
[2] NOAA, NESDIS Ctr Satellite Applicat & Res, College Pk, MD 20740 USA
[3] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA
[4] Univ Maryland, Earth Syst Sci Interdisciplinary Ctr, College Pk, MD 20771 USA
[5] Aberystwyth Univ, Dept Geog & Earth Sci, Aberystwyth SY23 3FL, Dyfed, Wales
基金
美国国家航空航天局;
关键词
Atmospheric moisture retrieval; data assimilation; European Centre for Medium-Range Weather Forecasts (ECMWF) analysis; H2O absorption; inversion algorithm; passive microwave radiometer; radiative transfer model; radiosonde; sea ice screening; water vapor sounding; SURFACE-TEMPERATURE; VAPOR; RADIOSONDE; REGRESSION; FOREST;
D O I
10.1109/JSTARS.2015.2447532
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The Bayes Principal components Backpropagation Network (BPBN) is proposed to retrieve total precipitable water (TPW) from the AMSR2 instrument on-board recently launched GCOM-W1 satellite. The proposed algorithm is a physical inversion method, developed using a radiative transfer model to assure that the geophysical retrieval of the TPW is consistent with the radiative transfer theory. The algorithm is comprised of-a Bayes variational algorithm for bias correction, the principal components transformation of the bias-corrected radiometric brightness temperature, and finally, a Bayesian regulation backpropagation network to translate the principal components to TPW estimate in the geophysical space. The algorithm is applicable over ocean, and in clear and cloudy scenes. However, the rainy and sea ice scenes are excluded in the retrieval. A random forest classifier and NASA sea ice temperature retrieval algorithm are used to detect and suppress the rainy and sea ice scenes, respectively. On the whole, the BPBN is a "comprehensive" algorithm, from discarding the redundant scenes to transforming the radiometric information to TPW estimate, and doesn't use any auxiliary data. This will make it very useful for assimilating into the numerical weather prediction models. The retrieval accuracy of the BPBN algorithm is around 2 kg/m(2).
引用
收藏
页码:4819 / 4824
页数:6
相关论文
共 22 条
  • [1] Analysis of Water Vapor over Nigeria Using Radiosonde and Satellite Data
    Adeyemi, Babatunde
    Joerg, Schulz
    [J]. JOURNAL OF APPLIED METEOROLOGY AND CLIMATOLOGY, 2012, 51 (10) : 1855 - 1866
  • [2] 李俊, 1994, Advances in Atmospheric Sciences, V11, P421
  • [3] A comparison of total precipitable water measurements from radiosonde and sunphotometers
    Campmany, Elies
    Bech, Joan
    Rodriguez-Marcos, Javier
    Sola, Yolanda
    Lorente, Jeronimo
    [J]. ATMOSPHERIC RESEARCH, 2010, 97 (03) : 385 - 392
  • [4] Development of a New Daily-Scale Forest Fire Danger Forecasting System Using Remote Sensing Data
    Chowdhury, Ehsan H.
    Hassan, Quazi K.
    [J]. REMOTE SENSING, 2015, 7 (03): : 2431 - 2448
  • [5] Sensitivity analysis of ratio between ultraviolet and total shortwave solar radiation to cloudiness, ozone, aerosols and precipitable water
    de Miguel, Argimiro
    Mateos, David
    Bilbao, Julia
    Roman, Roberto
    [J]. ATMOSPHERIC RESEARCH, 2011, 102 (1-2) : 136 - 144
  • [6] Characteristics of water-vapour inversions observed over the Arctic by Atmospheric Infrared Sounder (AIRS) and radiosondes
    Devasthale, A.
    Sedlar, J.
    Tjernstrom, M.
    [J]. ATMOSPHERIC CHEMISTRY AND PHYSICS, 2011, 11 (18) : 9813 - 9823
  • [7] 李俊, 1994, Advances in Atmospheric Sciences, V11, P128
  • [8] How Total Precipitable Water Vapor Anomalies Relate to Cloud Vertical Structure
    Forsythe, John M.
    Dodson, Jason B.
    Partain, Philip T.
    Kidder, Stanley Q.
    Vonder Haar, Thomas H.
    [J]. JOURNAL OF HYDROMETEOROLOGY, 2012, 13 (02) : 709 - 721
  • [9] Functional regression via variational Bayes
    Goldsmith, Jeff
    Wand, Matt P.
    Crainiceanu, Ciprian
    [J]. ELECTRONIC JOURNAL OF STATISTICS, 2011, 5 : 572 - 602
  • [10] Impact of assimilation of ATOVS temperature and humidity and SSM/I total precipitable water on the simulation of a monsoon depression
    Govindankutty, M.
    Chandrasekar, A.
    [J]. NATURAL HAZARDS, 2011, 59 (03) : 1647 - 1669