Mechanics of stretchable inorganic electronic materials

被引:106
|
作者
Song, J. [1 ]
Jiang, H. [2 ]
Huang, Y. [3 ,4 ]
Rogers, J. A. [5 ,6 ]
机构
[1] Univ Miami, Dept Mech & Aerosp Engn, Coral Gables, FL 33146 USA
[2] Arizona State Univ, Dept Mech & Aerosp Engn, Tempe, AZ 85287 USA
[3] Northwestern Univ, Dept Civil & Environm Engn, Evanston, IL 60208 USA
[4] Northwestern Univ, Dept Mech Engn, Evanston, IL 60208 USA
[5] Univ Illinois, Dept Mat Sci & Engn, Dept Elect & Comp Engn, Dept Mech Sci & Engn,Dept Chem, Urbana, IL 61801 USA
[6] Univ Illinois, Frederick Seitz Mat Res Lab, Urbana, IL 61801 USA
来源
JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A | 2009年 / 27卷 / 05期
基金
美国国家科学基金会;
关键词
deformation; elasticity; flexible electronics; materials science; semiconductor materials; FIELD-EFFECT TRANSISTORS; THIN-FILM TRANSISTORS; ORGANIC SEMICONDUCTORS; COMPLIANT SUBSTRATE; INTEGRATED-CIRCUITS; ELASTIC-MODULI; LARGE-AREA; SILICON; SOFT; PATTERNS;
D O I
10.1116/1.3168555
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Electronic systems that offer elastic mechanical responses to high strain deformation are of growing interest due to their ability to enable new applications whose requirements are impossible to satisfy with conventional wafer-based technologies. This article reviews the mechanics of stretchable inorganic materials on compliant substrates. Specifically, three forms of stretchable structures are reviewed. The first one is stretchable ribbon, which provides one-dimensional stretchability. The second is stretchable nanomembranes, which can be stretched in all directions. The last is a noncoplanar mesh design, which has the advantage of providing large stretchability up to and exceeding 100%. Mechanics models and their comparison to experiment are reviewed for these three cases. Such models provide design guidelines for stretchable electronics.
引用
收藏
页码:1107 / 1125
页数:19
相关论文
共 50 条
  • [1] Materials and Mechanics for Stretchable Electronics
    Rogers, John A.
    Someya, Takao
    Huang, Yonggang
    SCIENCE, 2010, 327 (5973) : 1603 - 1607
  • [2] Mechanics and thermal management of stretchable inorganic electronics
    Song, Jizhou
    Feng, Xue
    Huang, Yonggang
    NATIONAL SCIENCE REVIEW, 2016, 3 (01) : 128 - 143
  • [3] Mechanics of stretchable batteries and supercapacitors
    Zhang, Yihui
    Huang, Yonggang
    Rogers, John A.
    CURRENT OPINION IN SOLID STATE & MATERIALS SCIENCE, 2015, 19 (03) : 190 - 199
  • [4] Stretchable, Curvilinear Electronics Based on Inorganic Materials
    Kim, Dae-Hyeong
    Xiao, Jianliang
    Song, Jizhou
    Huang, Yonggang
    Rogers, John A.
    ADVANCED MATERIALS, 2010, 22 (19) : 2108 - 2124
  • [5] Stretchable electronics based on inorganic semiconducting materials
    Kang, Seung-Han
    Jo, Jeong-Wan
    Kim, Jaehyun
    Park, Sung Kyu
    JOURNAL OF MATERIALS CHEMISTRY C, 2024, : 19323 - 19351
  • [6] Inorganic semiconducting materials for flexible and stretchable electronics
    Yu, Ki Jun
    Yan, Zheng
    Han, Mengdi
    Rogers, John A.
    NPJ FLEXIBLE ELECTRONICS, 2017, 1 (01)
  • [7] Mechanics of noncoplanar mesh design for stretchable electronic circuits
    Song, J.
    Huang, Y.
    Xiao, J.
    Wang, S.
    Hwang, K. C.
    Ko, H. C.
    Kim, D. -H.
    Stoykovich, M. P.
    Rogers, J. A.
    JOURNAL OF APPLIED PHYSICS, 2009, 105 (12)
  • [8] Mechanical Buckling: Mechanics, Metrology, and Stretchable Electronics
    Khang, Dahl-Young
    Rogers, John A.
    Lee, Hong H.
    ADVANCED FUNCTIONAL MATERIALS, 2009, 19 (10) : 1526 - 1536
  • [9] Stretchable Thin Film Materials: Fabrication, Application, and Mechanics
    Wang, Yu
    Li, Zhengwei
    Xiao, Jianliang
    JOURNAL OF ELECTRONIC PACKAGING, 2016, 138 (02)
  • [10] Inorganic Materials and Assembly Techniques for Flexible and Stretchable Electronics
    He, Junwen
    Nuzzo, Ralph G.
    Rogers, John A.
    PROCEEDINGS OF THE IEEE, 2015, 103 (04) : 619 - 632