Wide-Angle Sparse 3D Synthetic Aperture Radar Imaging for Nonlinear Flight Paths

被引:10
作者
Austin, Christian D. [1 ]
Moses, Randolph L. [1 ]
机构
[1] Ohio State Univ, Dept Elect & Comp Engn, Columbus, OH 43210 USA
来源
NAECON 2008 - IEEE NATIONAL AEROSPACE AND ELECTRONICS CONFERENCE | 2008年
关键词
D O I
10.1109/NAECON.2008.4806567
中图分类号
V [航空、航天];
学科分类号
08 ; 0825 ;
摘要
Conventional three-dimensional (3D) Fourier synthetic aperture radar (SAR) imaging requires a collection of radar returns from multiple linear passes over a scene. Image resolution is improved by increasing the extent of these passes in azimuth and elevation. Hence, high resolution imagery requires large data collection times and storage capacity. In this work we investigate wide-angle 3D SAR image reconstruction for a sparse nonlinear collection path. This collection modality requires less data acquisition time and storage capacity than conventional linear collection. Images are reconstructed from measured radar returns using l(1)-penalized least-squares inversion. An example is presented demonstrating that images with well-resolved features can be formed using data collected along a sparse nonlinear path.
引用
收藏
页码:330 / 336
页数:7
相关论文
共 17 条
[1]  
*AIR FORC RES LAB, 2008, BACKH DAT SAMPL VIS
[2]   Interferometric synthetic aperture radar detection and estimation based 3D image reconstruction [J].
Austin, Christian D. ;
Moses, Randolph L. .
ALGORITHMS FOR SYNTHETIC APERTURE RADAR IMAGERY XIII, 2006, 6237
[3]  
BATO O, 2008, ALGORITHMS SYNTHETIC, V15
[4]   Feature-enhanced synthetic aperture radar image formation based on nonquadratic regularization [J].
Çetin, M ;
Karl, WC .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2001, 10 (04) :623-631
[5]   Atomic decomposition by basis pursuit [J].
Chen, SSB ;
Donoho, DL ;
Saunders, MA .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 1998, 20 (01) :33-61
[6]  
DEGRAAF S, 2005, 13 ANN AD SENS ARR P
[7]   Enhanced imaging over complete circular apertures [J].
Ertin, Etnre ;
Potter, Lee C. ;
Moses, Randolph L. .
2006 FORTIETH ASILOMAR CONFERENCE ON SIGNALS, SYSTEMS AND COMPUTERS, VOLS 1-5, 2006, :1580-+
[8]   Gradient Projection for Sparse Reconstruction: Application to Compressed Sensing and Other Inverse Problems [J].
Figueiredo, Mario A. T. ;
Nowak, Robert D. ;
Wright, Stephen J. .
IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, 2007, 1 (04) :586-597
[9]  
Friedman J, 2001, The elements of statistical learning, V1, DOI DOI 10.1007/978-0-387-21606-5
[10]  
Jakowatz C. V., 1996, Spotlight-Mode Synthetic Aperture Radar: A Signal Processing Approach