Approximation of attractors using Chebyshev polynomials

被引:1
作者
Yannacopoulos, AN
Brindley, J
Merkin, JH
Pilling, MJ
机构
[1] UNIV LEEDS,DEPT APPL MATH,LEEDS LS2 9JT,W YORKSHIRE,ENGLAND
[2] UNIV LEEDS,SCH CHEM,LEEDS LS2 9JT,W YORKSHIRE,ENGLAND
来源
PHYSICA D | 1996年 / 99卷 / 2-3期
关键词
D O I
10.1016/S0167-2789(96)00164-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A method for the approximation of the attractor of dissipative systems of differential equations using expansion of the asymptotic solution in a series of Chebyshev polynomials is proposed. The method is applied to the reduction of the three-dimensional Belousov-2abotinskii system to a two-dimensional one. The choice of other bases for the reconstruction of the attractor is discussed with special reference to Hermite functions where the derivation is worked out explicitly.
引用
收藏
页码:162 / 174
页数:13
相关论文
共 50 条
  • [21] CHEBYSHEV POLYNOMIALS AND BEST RANK-ONE APPROXIMATION RATIO
    Agrachev, Andrei
    Kozhasov, Khazhgali
    Uschmajew, Andre
    [J]. SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2020, 41 (01) : 308 - 331
  • [22] Approximation of discrete functions and Chebyshev polynomials orthogonal on the uniform grid
    I. I. Sharapudinov
    [J]. Mathematical Notes, 2000, 67 : 389 - 397
  • [23] APPROXIMATION OF CHEBYSHEV POLYNOMIALS Tn(X) BY LINE SEGMENTS.
    Aralov, M.S.
    Speranskiy, M.A.
    [J]. Telecommunications and Radio Engineering (English translation of Elektrosvyaz and Radiotekhnika), 1979, 33-34 (09): : 111 - 113
  • [24] The third and fourth kinds of Chebyshev polynomials and best uniform approximation
    Eslahchi, M. R.
    Dehghan, Mehdi
    Amani, Sanaz
    [J]. MATHEMATICAL AND COMPUTER MODELLING, 2012, 55 (5-6) : 1746 - 1762
  • [25] Approximation of discrete functions and Chebyshev polynomials orthogonal on the uniform grid
    Sharapudinov, II
    [J]. MATHEMATICAL NOTES, 2000, 67 (3-4) : 389 - 397
  • [26] Phase Unwrapping using Chebyshev Polynomials
    de la Rosa Miranda, E.
    Gonzalez-Ramirez, E.
    Arceo-Olague, J. G.
    Villa-Hernandez, J. J.
    de la Rosa Vargas, Ismael
    Saucedo-Anaya, Tonatiuh
    Berriel-Valdos, L. R.
    Escalante, N.
    [J]. 8TH IBEROAMERICAN OPTICS MEETING AND 11TH LATIN AMERICAN MEETING ON OPTICS, LASERS, AND APPLICATIONS, 2013, 8785
  • [27] CHEBYSHEV POLYNOMIALS
    BURTON, AJ
    DAWSON, CP
    [J]. ELECTRONIC ENGINEERING, 1968, 40 (486): : 475 - &
  • [28] CHEBYSHEV POLYNOMIALS
    DAWSON, CP
    [J]. ELECTRONIC ENGINEERING, 1968, 40 (481): : 164 - &
  • [29] On the Chebyshev polynomials
    Boyadjiev, L
    Scherer, R
    [J]. KUWAIT JOURNAL OF SCIENCE & ENGINEERING, 2001, 28 (02): : 227 - 240
  • [30] CHEBYSHEV POLYNOMIALS
    WEIGHTMA.JA
    DAWSON, CP
    [J]. ELECTRONIC ENGINEERING, 1968, 40 (488): : 590 - &