Na2Ti3O7 Nanotubes as Anode Materials for Sodium-ion Batteries and Self-powered Systems

被引:20
|
作者
Chen, Zehua [1 ,2 ]
Lu, Liang [1 ,2 ]
Li, Nianwu [1 ]
Sun, Chunwen [1 ,3 ,4 ]
机构
[1] Chinese Acad Sci, CAS Ctr Excellence Nanosci, Beijing Inst Nanoenergy & Nanosyst, Beijing 100083, Peoples R China
[2] Henan Polytech Univ, Coll Chem & Chem Engn, Jiaozuo 454000, Henan, Peoples R China
[3] Univ Chinese Acad Sci, Sch Nanosci & Technol, Beijing 100049, Peoples R China
[4] Guangxi Univ, Ctr Nanoenergy Res, Sch Phys Sci & Technol, Nanning 530004, Peoples R China
基金
中国国家自然科学基金;
关键词
Na2Ti3O7; nanotubes; cycle life; solid-state sodium-ion batteries; self-powered systems; PERFORMANCE; NANOSHEETS; CAPACITY; EXFOLIATION; STATE;
D O I
10.1002/celc.201900699
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Na2Ti3O7 (NTO) is a potential anode material with low discharge voltage for room-temperature sodium-ion batteries. In this work, NTO nanotubes were prepared by a hydrothermal method. XRD, SEM, TEM, and HRTEM studies are performed to investigate the composition, morphology, and structure. As anodes for sodium-ion batteries, NTO nanotubes show a reversible capacity of 126.2 mAh g(-1) at 100 mA g(-1). The discharge capacity can still reach 109 mAh g(-1) even for 2000 cycles. Solid-state sodium-ion batteries containing NTO-nanotube anodes and an Na3Zr2Si2PO12 solid electrolyte display a comparable performance to batteries with a liquid electrolyte. Moreover, the prepared solid-state sodium battery is also demonstrated to store mechanical energy harvested by triboelectric nanogenerators (TENGs). The discharge capacity reaches 121 mAh g(-1) at 5 mA g(-1).
引用
收藏
页码:3085 / 3090
页数:6
相关论文
共 50 条
  • [1] Enhanced Cycle Stability of Na2Ti3O7 Nanosheets Grown in Situ on Nickel Foam as an Anode for Sodium-Ion Batteries
    Chen, Zehua
    Zhang, Qixiang
    Lu, Liang
    Chen, Xingying
    Wang, Shuo
    Xin, Chengzhou
    Xing, Baolin
    Zhang, Chuanxiang
    ENERGY & FUELS, 2020, 34 (03) : 3901 - 3908
  • [2] Review and prospects on the low-voltage Na2Ti3O7 anode materials for sodium-ion batteries
    Dong, Jun
    Jiang, Yalong
    Wang, Ruxing
    Wei, Qiulong
    An, Qinyou
    Zhang, Xiaoxing
    JOURNAL OF ENERGY CHEMISTRY, 2024, 88 : 446 - 460
  • [3] Layered Structure Na2Ti3O7 as a Promising Anode Material for Sodium-Ion Batteries
    Pan, Jun
    Wang, Nana
    Lv, Dan
    Dong, Wujie
    Yang, Jian
    Huang, Fuqiang
    ADVANCED ENERGY AND SUSTAINABILITY RESEARCH, 2021, 2 (06):
  • [4] Self-assembled twine-like Na2Ti3O7 nanostructure as advanced anode for sodium-ion batteries
    Yan, Xiao
    Sun, Deye
    Jiang, Jicheng
    Yan, Wenchao
    Jin, Yongcheng
    JOURNAL OF ALLOYS AND COMPOUNDS, 2017, 697 : 208 - 214
  • [5] Sodium Titanate/Carbon (Na2Ti3O7/C) Nanofibers via Electrospinning Technique as the Anode of Sodium-ion Batteries
    Zou, Wei
    Fan, Cong
    Li, Jingze
    CHINESE JOURNAL OF CHEMISTRY, 2017, 35 (01) : 79 - 85
  • [6] Design and Synthesis of Layered Na2Ti3O7 and Tunnel Na2Ti6O13 Hybrid Structures with Enhanced Electrochemical Behavior for Sodium-Ion Batteries
    Wu, Chunjin
    Hua, Weibo
    Zhang, Zheng
    Zhong, Benhe
    Yang, Zuguang
    Feng, Guilin
    Xiang, Wei
    Wu, Zhenguo
    Guo, Xiaodong
    ADVANCED SCIENCE, 2018, 5 (09):
  • [7] A mild process for the synthesis of Na2Ti3O7 as an anode material for sodium-ion batteries in deep eutectic solvent
    Wang, Cheng
    Yang, Yang
    Chen, Zongni
    He, Cui
    Su, Jing
    Wen, Yanxuan
    JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS, 2019, 30 (09) : 8422 - 8427
  • [8] Deeper Insights into the Morphology Effect of Na2Ti3O7 Nanoarrays on Sodium-Ion Storage
    Chen, Xiangxiong
    Li, Jun
    Gao, Zhaohe
    Qian, Dong
    Waterhouse, Geoffrey I. N.
    Liu, Jinlong
    SMALL, 2024, 20 (38)
  • [9] Building a Stable Plateau-Type Na2Ti3O7 Anode Interface toward Advanced Sodium-Ion Batteries
    Jiang, Zhenming
    Ke, Haifeng
    Zhang, Yanlei
    Li, Linwei
    Wang, Feng
    Li, Jidao
    Huang, Jianying
    Zhang, Yanyan
    Jiang, Yinzhu
    Chen, Binmeng
    Tang, Yuxin
    ENERGY & FUELS, 2024, 38 (03) : 2472 - 2479
  • [10] Mesoporous Na2Ti3O7 microspheres with rigid framework as anode materials for high-performance sodium ion batteries
    Chen, Si
    Gao, Lin
    Zhang, Lulu
    Yang, Xuelin
    IONICS, 2019, 25 (05) : 2211 - 2219