Leveraging the complementary nature of RNA-Seq and shotgun proteomics data

被引:62
作者
Wang, Xiaojing [1 ]
Liu, Qi [1 ]
Zhang, Bing [1 ,2 ,3 ]
机构
[1] Vanderbilt Univ, Dept Biomed Informat, Sch Med, Nashville, TN 37232 USA
[2] Vanderbilt Univ, Vanderbilt Ingram Canc Ctr, Sch Med, Nashville, TN 37232 USA
[3] Vanderbilt Univ, Dept Canc Biol, Sch Med, Nashville, TN 37232 USA
关键词
Data integration; Proteogenomics; Proteomics; Posttranscriptional regulation; RNA-Seq; HUMAN CELL-LINES; REVEALS POSTTRANSCRIPTIONAL REGULATION; SPECTROMETRY-BASED PROTEIN; MASS-SPECTROMETRY; MESSENGER-RNA; SACCHAROMYCES-CEREVISIAE; TRANSCRIPTOMIC ANALYSES; GENE-REGULATION; DEEP PROTEOME; EXPRESSION;
D O I
10.1002/pmic.201400184
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
RNA sequencing (RNA-Seq) and MS-based shotgun proteomics are powerful high-throughput technologies for identifying and quantifying RNA transcripts and proteins, respectively. With the increasing affordability of these technologies, many projects have started to apply both to the same samples to achieve a more comprehensive understanding of biological systems. A major analytical challenge for such integrative projects is how to effectively leverage the complementary nature of RNA-Seq and shotgun proteomics data. RNA-Seq provides comprehensive information on mRNA abundance, alternative splicing, nucleotide variation, and structure alteration. Sample-specific protein databases derived from RNA-Seq data can better approximate the real protein pools in cell and tissue samples and thus improve protein identification. Meanwhile, proteomics data provide essential confirmation of the validity and functional relevance of novel findings from RNA-Seq data. At the quantitative level, mRNA and protein levels are only modestly correlated, suggesting strong involvement of posttranscriptional regulation in controlling gene expression. Here, we review recent studies at the interface of RNA-Seq and proteomics data. We discuss goals, accomplishments, and challenges in RNA-Seq-based proteogenomics. We also examine the current status and future potential of parallel transcriptome and proteome quantification in revealing posttranscriptional regulatory mechanisms.
引用
收藏
页码:2676 / 2687
页数:12
相关论文
共 86 条
[1]   Global signatures of protein and mRNA expression levels [J].
Abreu, Raquel de Sousa ;
Penalva, Luiz O. ;
Marcotte, Edward M. ;
Vogel, Christine .
MOLECULAR BIOSYSTEMS, 2009, 5 (12) :1512-1526
[2]   Non-model organisms, a species endangered by proteogenomics [J].
Armengaud, Jean ;
Trapp, Judith ;
Pible, Olivier ;
Geffard, Olivier ;
Chaumot, Arnaud ;
Hartmann, Erica M. .
JOURNAL OF PROTEOMICS, 2014, 105 :5-18
[3]   Microbiology and proteomics, getting the best of both worlds! [J].
Armengaud, Jean .
ENVIRONMENTAL MICROBIOLOGY, 2013, 15 (01) :12-23
[4]   Long noncoding RNAs are rarely translated in two human cell lines [J].
Banfai, Balazs ;
Jia, Hui ;
Khatun, Jainab ;
Wood, Emily ;
Risk, Brian ;
Gundling, William E., Jr. ;
Kundaje, Anshul ;
Gunawardena, Harsha P. ;
Yu, Yanbao ;
Xie, Ling ;
Krajewski, Krzysztof ;
Strahl, Brian D. ;
Chen, Xian ;
Bickel, Peter ;
Giddings, Morgan C. ;
Brown, James B. ;
Lipovich, Leonard .
GENOME RESEARCH, 2012, 22 (09) :1646-1657
[5]   The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity [J].
Barretina, Jordi ;
Caponigro, Giordano ;
Stransky, Nicolas ;
Venkatesan, Kavitha ;
Margolin, Adam A. ;
Kim, Sungjoon ;
Wilson, Christopher J. ;
Lehar, Joseph ;
Kryukov, Gregory V. ;
Sonkin, Dmitriy ;
Reddy, Anupama ;
Liu, Manway ;
Murray, Lauren ;
Berger, Michael F. ;
Monahan, John E. ;
Morais, Paula ;
Meltzer, Jodi ;
Korejwa, Adam ;
Jane-Valbuena, Judit ;
Mapa, Felipa A. ;
Thibault, Joseph ;
Bric-Furlong, Eva ;
Raman, Pichai ;
Shipway, Aaron ;
Engels, Ingo H. ;
Cheng, Jill ;
Yu, Guoying K. ;
Yu, Jianjun ;
Aspesi, Peter, Jr. ;
de Silva, Melanie ;
Jagtap, Kalpana ;
Jones, Michael D. ;
Wang, Li ;
Hatton, Charles ;
Palescandolo, Emanuele ;
Gupta, Supriya ;
Mahan, Scott ;
Sougnez, Carrie ;
Onofrio, Robert C. ;
Liefeld, Ted ;
MacConaill, Laura ;
Winckler, Wendy ;
Reich, Michael ;
Li, Nanxin ;
Mesirov, Jill P. ;
Gabriel, Stacey B. ;
Getz, Gad ;
Ardlie, Kristin ;
Chan, Vivien ;
Myer, Vic E. .
NATURE, 2012, 483 (7391) :603-607
[6]   Integrative "Omics"-Approach Discovers Dynamic and Regulatory Features of Bacterial Stress Responses [J].
Berghoff, Bork A. ;
Konzer, Anne ;
Mank, Nils N. ;
Looso, Mario ;
Rische, Tom ;
Foerstner, Konrad U. ;
Krueger, Marcus ;
Klug, Gabriele .
PLOS GENETICS, 2013, 9 (06)
[7]   Posttranscriptional expression regulation: What determines translation rates? [J].
Brockmann, Regina ;
Beyer, Andreas ;
Heinisch, Juergen J. ;
Wilhelm, Thomas .
PLOS COMPUTATIONAL BIOLOGY, 2007, 3 (03) :531-539
[8]   Upstream open reading frames cause widespread reduction of protein expression and are polymorphic among humans [J].
Calvo, Sarah E. ;
Pagliarini, David J. ;
Mootha, Vamsi K. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2009, 106 (18) :7507-7512
[9]   Personal Omics Profiling Reveals Dynamic Molecular and Medical Phenotypes [J].
Chen, Rui ;
Mias, George I. ;
Li-Pook-Than, Jennifer ;
Jiang, Lihua ;
Lam, Hugo Y. K. ;
Chen, Rong ;
Miriami, Elana ;
Karczewski, Konrad J. ;
Hariharan, Manoj ;
Dewey, Frederick E. ;
Cheng, Yong ;
Clark, Michael J. ;
Im, Hogune ;
Habegger, Lukas ;
Balasubramanian, Suganthi ;
O'Huallachain, Maeve ;
Dudley, Joel T. ;
Hillenmeyer, Sara ;
Haraksingh, Rajini ;
Sharon, Donald ;
Euskirchen, Ghia ;
Lacroute, Phil ;
Bettinger, Keith ;
Boyle, Alan P. ;
Kasowski, Maya ;
Grubert, Fabian ;
Seki, Scott ;
Garcia, Marco ;
Whirl-Carrillo, Michelle ;
Gallardo, Mercedes ;
Blasco, Maria A. ;
Greenberg, Peter L. ;
Snyder, Phyllis ;
Klein, Teri E. ;
Altman, Russ B. ;
Butte, Atul J. ;
Ashley, Euan A. ;
Gerstein, Mark ;
Nadeau, Kari C. ;
Tang, Hua ;
Snyder, Michael .
CELL, 2012, 148 (06) :1293-1307
[10]   HITS-CLIP: panoramic views of protein-RNA regulation in living cells [J].
Darnell, Robert B. .
WILEY INTERDISCIPLINARY REVIEWS-RNA, 2010, 1 (02) :266-286