Existence and Stability of Standing Waves for Supercritical NLS with a Partial Confinement

被引:91
作者
Bellazzini, Jacopo [1 ]
Boussaid, Nabile [2 ]
Jeanjean, Louis [2 ]
Visciglia, Nicola [3 ]
机构
[1] Univ Sassari, Via Piandanna 4, I-07100 Sassari, Italy
[2] Univ Bourgogne Franche Comte, Lab Math UMR 6623, 16 Route Gray, F-25030 Besancon, France
[3] Univ Pisa, Dipartimento Matemat, Largo Bruno Pontecorvo 5, I-56127 Pisa, Italy
关键词
NONLINEAR SCHRODINGER-EQUATION; GROSS-PITAEVSKII EQUATION; GROUND-STATES; ORBITAL STABILITY; PRESCRIBED NORM; RADIAL SYMMETRY; INSTABILITY; SYMMETRIZATION; DERIVATION;
D O I
10.1007/s00220-017-2866-1
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We prove the existence of orbitally stable ground states to NLS with a partial confinement together with qualitative and symmetry properties. This result is obtained for nonlinearities which are L (2)-supercritical; in particular, we cover the physically relevant cubic case. The equation that we consider is the limit case of the cigar-shaped model in BEC.
引用
收藏
页码:229 / 251
页数:23
相关论文
共 40 条
[1]   OBSERVATION OF BOSE-EINSTEIN CONDENSATION IN A DILUTE ATOMIC VAPOR [J].
ANDERSON, MH ;
ENSHER, JR ;
MATTHEWS, MR ;
WIEMAN, CE ;
CORNELL, EA .
SCIENCE, 1995, 269 (5221) :198-201
[2]  
[Anonymous], 1993, MATH APPL BERLIN MAT
[3]   Scattering for Nonlinear Schrodinger Equation Under Partial Harmonic Confinement [J].
Antonelli, Paolo ;
Carles, Remi ;
Silva, Jorge Drumond .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2015, 334 (01) :367-396
[4]   MATHEMATICAL THEORY AND NUMERICAL METHODS FOR BOSE-EINSTEIN CONDENSATION [J].
Bao, Weizhu ;
Cai, Yongyong .
KINETIC AND RELATED MODELS, 2013, 6 (01) :1-135
[5]   Numerical solution of the Gross-Pitaevskii equation for Bose-Einstein condensation [J].
Bao, WZ ;
Jaksch, D ;
Markowich, PA .
JOURNAL OF COMPUTATIONAL PHYSICS, 2003, 187 (01) :318-342
[6]   ON DIPOLAR QUANTUM GASES IN THE UNSTABLE REGIME [J].
Bellazzini, Jacopo ;
Jeanjean, Louis .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2016, 48 (03) :2028-2058
[7]   Existence and instability of standing waves with prescribed norm for a class of Schrodinger-Poisson equations [J].
Bellazzini, Jacopo ;
Jeanjean, Louis ;
Luo, Tingjian .
PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2013, 107 :303-339
[8]  
Benci V, 2003, ADV NONLINEAR STUD, V3, P151
[9]  
BERESTYCKI H, 1981, CR ACAD SCI I-MATH, V293, P489
[10]   A RELATION BETWEEN POINTWISE CONVERGENCE OF FUNCTIONS AND CONVERGENCE OF FUNCTIONALS [J].
BREZIS, H ;
LIEB, E .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1983, 88 (03) :486-490