LATENT DIRICHLIET LANGUAGE MODEL FOR SPEECH RECOGNITION

被引:0
作者
Chien, Jen-Tzung [1 ]
Chueh, Chuang-Hua [1 ]
机构
[1] Natl Cheng Kung Univ, Dept Comp Sci & Informat Engn, Tainan 70101, Taiwan
来源
2008 IEEE WORKSHOP ON SPOKEN LANGUAGE TECHNOLOGY: SLT 2008, PROCEEDINGS | 2008年
关键词
Natural languages; Bayes procedures; clustering methods; smoothing methods; speech recognition;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Latent Dirichlet allocation (LDA) has been successfully presented for document modeling and classification. LDA calculates the document probability based on bag-of-words scheme without considering the sequence of words. This model discovers the topic structure at document level, which is different from the concern of word prediction in speech recognition. In this paper, we present a new latent Dirichlet language model (LDLM) for modeling of word sequence. A new Bayesian framework is introduced by merging the Dirichlet priors to characterize the uncertainty of latent topics of n-gram events. The robust topic-based language model is established accordingly. In the experiments, we implement LDLM for continuous speech recognition and obtain better performance than probabilistic latent semantic analysis (PLSA) based language method.
引用
收藏
页码:201 / 204
页数:4
相关论文
共 11 条
  • [1] [Anonymous], 2006, P 29 ANN INT ACM SIG, DOI DOI 10.1145/1148170.1148204
  • [2] Exploiting latent semantic information in statistical language modeling
    Bellegarda, JR
    [J]. PROCEEDINGS OF THE IEEE, 2000, 88 (08) : 1279 - 1296
  • [3] Latent Dirichlet allocation
    Blei, DM
    Ng, AY
    Jordan, MI
    [J]. JOURNAL OF MACHINE LEARNING RESEARCH, 2003, 3 (4-5) : 993 - 1022
  • [4] Association pattern language modelling
    Chien, Jen-Tzung
    [J]. IEEE TRANSACTIONS ON AUDIO SPEECH AND LANGUAGE PROCESSING, 2006, 14 (05): : 1719 - 1728
  • [5] GILDEA D, 1999, P EUROSPEECH, P2167
  • [6] Heidel A., 2007, P INT, P2361
  • [7] Probabilistic latent semantic indexing
    Hofmann, T
    [J]. SIGIR'99: PROCEEDINGS OF 22ND INTERNATIONAL CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL, 1999, : 50 - 57
  • [8] Jordan Michael Irwin, 1999, Learning in graphical models
  • [9] Mrva D., 2004, P ICSLP, P2257
  • [10] Tam Y., 2005, P INTERSPEECH, P5