Unraveling capillary interaction and viscoelastic response in atomic force microscopy of hydrated collagen fibrils

被引:24
作者
Uhlig, Manuel R. [1 ,2 ]
Magerle, Robert [1 ]
机构
[1] Tech Univ Chemnitz, Fak Nat Wissensch, D-09107 Chemnitz, Germany
[2] CSIC, Inst Ciencia Mat Madrid, C Sor Juana Ines de la Cruz 3, E-28049 Madrid, Spain
关键词
TAPPING-MODE; MECHANICAL-PROPERTIES; ENERGY-DISSIPATION; ELASTIC-MODULUS; TENDON COLLAGEN; TRABECULAR BONE; SURFACE; NANOSCALE; WATER; INDENTATION;
D O I
10.1039/c6nr07697a
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The mechanical properties of collagen fibrils depend on the amount and the distribution of water molecules within the fibrils. Here, we use atomic force microscopy (AFM) to study the effect of hydration on the viscoelastic properties of reconstituted type I collagen fibrils in air with controlled relative humidity. With the same AFM tip, we investigate the same area of a collagen fibril with two different force spectroscopy methods: force-distance (FD) and amplitude-phase-distance (APD) measurements. This allows us to separate the contributions of the fibril's viscoelastic response and the capillary force to the tip-sample interaction. A water bridge forms between the tip apex and the surface, causing an attractive capillary force, which is the main contribution to the energy dissipated from the tip to the specimen in dynamic AFM. The force hysteresis in the FD measurements and the tip indentation of only 2 nm in the APD measurements show that the hydrated collagen fibril is a viscoelastic solid. The mechanical properties of the gap regions and the overlap regions in the fibril's D-band pattern differ only in the top 2 nm but not in the fibril's bulk. We attribute this to the reduced number of intermolecular crosslinks in the reconstituted collagen fibril. The presented methodology allows the mechanical surface properties of hydrated collagenous tissues and biomaterials to be studied with unprecedented detail on the nanometer scale.
引用
收藏
页码:1244 / 1256
页数:13
相关论文
共 76 条
  • [61] Nanoscale Swelling Heterogeneities in Type I Collagen Fibrils
    Spitzner, Eike-Christian
    Roeper, Stephanie
    Zerson, Mario
    Bernstein, Anke
    Magerle, Robert
    [J]. ACS NANO, 2015, 9 (06) : 5683 - 5694
  • [62] Multi-Set Point Intermittent Contact (MUSIC) Mode Atomic Force Microscopy of Oligothiophene Fibrils
    Spitzner, Eike-Christian
    Riesch, Christian
    Szilluweit, Ruth
    Tian, Liangfei
    Frauenrath, Holger
    Magerle, Robert
    [J]. ACS MACRO LETTERS, 2012, 1 (03): : 380 - 383
  • [63] Subsurface Imaging of Soft Polymeric Materials with Nanoscale Resolution
    Spitzner, Eike-Christian
    Riesch, Christian
    Magerle, Robert
    [J]. ACS NANO, 2011, 5 (01) : 315 - 320
  • [64] Dynamics of polymer bridge formation and disruption
    Sprakel, Joris
    Bartscherer, Erik
    Hoffmann, Gerd
    Cohen Stuart, Martien A.
    van der Gucht, Jasper
    [J]. PHYSICAL REVIEW E, 2008, 78 (04):
  • [65] Dynamic elastic modulus of porcine articular cartilage determined at two different levels of tissue organization by indentation-type atomic force microscopy
    Stolz, M
    Raiteri, R
    Daniels, AU
    VanLandingham, MR
    Baschong, W
    Aebi, U
    [J]. BIOPHYSICAL JOURNAL, 2004, 86 (05) : 3269 - 3283
  • [66] Stolz M, 2009, NAT NANOTECHNOL, V4, P186, DOI [10.1038/NNANO.2008.410, 10.1038/nnano.2008.410]
  • [67] A molecular dynamics study of the interprotein interactions in collagen fibrils
    Streeter, Ian
    de Leeuw, Nora H.
    [J]. SOFT MATTER, 2011, 7 (07) : 3373 - 3382
  • [68] Relationship between phase shift and energy dissipation in tapping-mode scanning force microscopy
    Tamayo, J
    Garcia, R
    [J]. APPLIED PHYSICS LETTERS, 1998, 73 (20) : 2926 - 2928
  • [69] Deformation, contact time, and phase contrast in tapping mode scanning force microscopy
    Tamayo, J
    Garcia, R
    [J]. LANGMUIR, 1996, 12 (18) : 4430 - 4435
  • [70] Distribution of type I collagen morphologies in bone: Relation to estrogen depletion
    Wallace, Joseph M.
    Erickson, Blake
    Les, Clifford M.
    Orr, Bradford G.
    Holl, Mark M. Banaszak
    [J]. BONE, 2010, 46 (05) : 1349 - 1354