Identification of the tuberous sclerosis complex-2 tumor suppressor gene product tuberin as a target of the phosphoinositide 3-Kinase/Akt pathway

被引:1270
作者
Manning, BD
Tee, AR
Logsdon, MN
Blenis, J
Cantley, LC
机构
[1] Harvard Univ, Sch Med, Dept Cell Biol, Boston, MA 02115 USA
[2] Beth Israel Deaconess Med Ctr, Div Signal Transduct, Harvard Inst Med, Boston, MA 02115 USA
关键词
D O I
10.1016/S1097-2765(02)00568-3
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The S/T-protein kinases activated by phosphoinositide 3-kinase (PI3K) regulate a myriad of cellular processes. Here, we show that an approach using a combination of biochemistry and bioinformatics can identify substrates of these kinases. This approach identifies the tuberous sclerosis complex-2 gene product, tuberin, as a potential target of Akt/PKB. We demonstrate that, upon activation of PI3K, tuberin is phosphorylated on consensus recognition sites for PI3K-dependent S/T kinases. Moreover, Akt/PKB can phosphorylate tuberin in vitro and in vivo. We also show that S939 and T1462 of tuberin are PI3K-regulated phosphorylation sites and that T1462 is constitutively phosphorylated in PTEN-/(-) tumor-derived cell lines. Finally, we find that a tuberin mutant lacking the major PI3K-dependent phosphorylation sites can block the activation of S6K1, suggesting a means by which the PI3K-Akt pathway regulates S6K1 activity.
引用
收藏
页码:151 / 162
页数:12
相关论文
共 55 条
  • [1] Characterization of a 3-phosphoinositide-dependent protein kinase which phosphorylates and activates protein kinase B alpha
    Alessi, DR
    James, SR
    Downes, CP
    Holmes, AB
    Gaffney, PRJ
    Reese, CB
    Cohen, P
    [J]. CURRENT BIOLOGY, 1997, 7 (04) : 261 - 269
  • [2] Molecular basis for the substrate specificity of protein kinase B; Comparison with MAPKAP kinase-1 and p70 S6 kinase
    Alessi, DR
    Caudwell, FB
    Andjelkovic, M
    Hemmings, BA
    Cohen, P
    [J]. FEBS LETTERS, 1996, 399 (03) : 333 - 338
  • [3] A role of the kinase mTOR in cellular transformation induced by the oncoproteins P3k and Akt
    Aoki, M
    Blazek, E
    Vogt, PK
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2001, 98 (01) : 136 - 141
  • [4] Ten years of protein kinase B signalling: a hard Akt to follow
    Brazil, DP
    Hemmings, BA
    [J]. TRENDS IN BIOCHEMICAL SCIENCES, 2001, 26 (11) : 657 - 664
  • [5] PROTEIN-KINASE-B (C-AKT) IN PHOSPHATIDYLINOSITOL-3-OH INASE SIGNAL-TRANSDUCTION
    BURGERING, BMT
    COFFER, PJ
    [J]. NATURE, 1995, 376 (6541) : 599 - 602
  • [6] Cairns P, 1997, CANCER RES, V57, P4997
  • [7] New insights into tumor suppression: PTEN suppresses tumor formation by restraining the phosphoinositide 3-kinase AKT pathway
    Cantley, LC
    Neel, BG
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1999, 96 (08) : 4240 - 4245
  • [8] The 70 kDa S6 kinase complexes with and is activated by the Rho family G proteins Cdc42 and Rac1
    Chou, MM
    Blenis, J
    [J]. CELL, 1996, 85 (04) : 573 - 583
  • [9] RAPAMYCIN FKBP SPECIFICALLY BLOCKS GROWTH-DEPENDENT ACTIVATION OF AND SIGNALING BY THE 70 KD S6 PROTEIN-KINASES
    CHUNG, J
    KUO, CJ
    CRABTREE, GR
    BLENIS, J
    [J]. CELL, 1992, 69 (07) : 1227 - 1236
  • [10] PDGF-DEPENDENT AND INSULIN-DEPENDENT PP70(S6K) ACTIVATION MEDIATED BY PHOSPHATIDYLINOSITOL-3-OH KINASE
    CHUNG, JK
    GRAMMER, TC
    LEMON, KP
    KAZLAUSKAS, A
    BLENIS, J
    [J]. NATURE, 1994, 370 (6484) : 71 - 75