Large-order perturbation theory and de Sitter/anti-de Sitter effective actions

被引:20
作者
Das, Ashok
Dunne, Gerald V.
机构
[1] Univ Rochester, Dept Phys & Astron, Rochester, NY 14627 USA
[2] Saha Inst Nucl Phys, Kolkata 700064, W Bengal, India
[3] Univ Connecticut, Dept Phys, Storrs, CT 06269 USA
来源
PHYSICAL REVIEW D | 2006年 / 74卷 / 04期
关键词
D O I
10.1103/PhysRevD.74.044029
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We analyze the large-order behavior of the perturbative weak-field expansion of the effective Lagrangian density of a massive scalar in de Sitter and anti-de Sitter space, and show that this perturbative information is not sufficient to describe the nonperturbative behavior of these theories, in contrast to the analogous situation for the Euler-Heisenberg effective Lagrangian density for charged scalars in constant electric and magnetic background fields. For example, in even-dimensional de Sitter space there is particle production, but the effective Lagrangian density is nevertheless real, even though its weak-field expansion is a divergent nonalternating series whose formal imaginary part corresponds to the correct particle production rate. This apparent puzzle is resolved by considering the full nonperturbative structure of the relevant Feynman propagators, and cannot be resolved solely from the perturbative expansion.
引用
收藏
页数:9
相关论文
共 57 条
[1]  
Abramowitz M., 1970, HDB MATH FUNCTIONS
[2]  
ADAMCHIK VS, 2001, C APPL COMPUTER ALGE
[3]   VACUUM STATES IN DE-SITTER SPACE [J].
ALLEN, B .
PHYSICAL REVIEW D, 1985, 32 (12) :3136-3149
[4]   PHASE-TRANSITIONS IN DE-SITTER SPACE [J].
ALLEN, B .
NUCLEAR PHYSICS B, 1983, 226 (01) :228-252
[5]  
[Anonymous], 1990, LARGE ORDER BEHAV PE
[6]  
[Anonymous], 2001, HOUCHES SUMMER SCH S
[7]   QUANTUM FIELD-THEORY IN ANTI-DE SITTER SPACE-TIME [J].
AVIS, SJ ;
ISHAM, CJ ;
STOREY, D .
PHYSICAL REVIEW D, 1978, 18 (10) :3565-3576
[8]  
Avramidi I. G., 2000, Lect. Notes Phys. Monogr., V64, P1, DOI DOI 10.1007/3-540-46523-5
[9]  
Barnes E., 1904, T CAMBRIDGE PHILOS S, V19, P374
[10]   LARGE-ORDER BEHAVIOR OF PERTURBATION THEORY [J].
BENDER, CM ;
WU, TS .
PHYSICAL REVIEW LETTERS, 1971, 27 (07) :461-&