Machine learning-based pulse characterization in figure-eight mode-locked lasers

被引:41
作者
Kokhanovskiy, Alexey [1 ]
Bednyakova, Anastasia [1 ,2 ]
Kuprikov, Evgeny [1 ]
Ivanenko, Aleksey [1 ]
Dyatlov, Mikhail [1 ]
Lotkov, Daniil [1 ]
Kobtsev, Sergey [1 ]
Turitsyn, Sergey [1 ,3 ]
机构
[1] Novosibirsk State Univ, Div Laser Phys & Innovat Technol, Pirogova Str 2, Novosibirsk 630090, Russia
[2] Inst Computat Technol SB RAS, Novosibirsk 630090, Russia
[3] Aston Univ, Aston Inst Photon Technol, Birmingham B4 7ET, W Midlands, England
基金
俄罗斯科学基金会;
关键词
D O I
10.1364/OL.44.003410
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
By combining machine learning methods and the dispersive Fourier transform we demonstrate, to the best of our knowledge, for the first time the possibility to determine the temporal duration of picosecond-scale laser pulses using a nanosecond photodetector. A fiber figure of eight lasers with two amplifiers in a resonator was used to generate pulses with durations varying from 28 to 160 ps and spectral widths varied in the range of 0.75-12 nm. The average power of the pulses was in the range from 40 to 300 mW. The trained artificial neural network makes it possible to predict the pulse duration with the mean agreement of 95%. The proposed technique paves the way to creating compact and low-cost feedback for complex laser systems. (C) 2019 Optical Society of America
引用
收藏
页码:3410 / 3413
页数:4
相关论文
共 15 条
[1]  
Abadi M, 2016, PROCEEDINGS OF OSDI'16: 12TH USENIX SYMPOSIUM ON OPERATING SYSTEMS DESIGN AND IMPLEMENTATION, P265
[2]   Toward an autosetting mode-locked fiber laser cavity [J].
Andral, U. ;
Buguet, J. ;
Fodil, R. Si ;
Amrani, F. ;
Billard, F. ;
Hertz, E. ;
Grelu, Ph. .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 2016, 33 (05) :825-833
[3]   Deep learning and model predictive control for self-tuning mode-locked lasers [J].
Baumeister, Thomas ;
Brunton, Steven L. ;
Kutz, J. Nathan .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 2018, 35 (03) :617-626
[4]   Femtosecond pulse compression using a neural-network algorithm [J].
Farfan, Camille A. ;
Epstein, Jordan ;
Turner, Daniel B. .
OPTICS LETTERS, 2018, 43 (20) :5166-5169
[5]   Greedy function approximation: A gradient boosting machine [J].
Friedman, JH .
ANNALS OF STATISTICS, 2001, 29 (05) :1189-1232
[6]  
Goda K, 2013, NAT PHOTONICS, V7, P102, DOI [10.1038/nphoton.2012.359, 10.1038/NPHOTON.2012.359]
[7]   Direct control of mode-locking states of a fiber laser [J].
Iegorov, R. ;
Teamir, T. ;
Makey, G. ;
Ilday, F. O. .
OPTICA, 2016, 3 (12) :1312-1315
[8]  
Jiang H, 2016, INT C PAR DISTRIB SY, P785, DOI [10.1109/ICPADS.2016.0107, 10.1109/ICPADS.2016.105]
[9]   Electronic control of different generation regimes in mode-locked all-fibre F8 laser [J].
Kobtsev, Sergey ;
Ivanenko, Aleksey ;
Kokhanovskiy, Alexey ;
Smirnov, Sergey .
LASER PHYSICS LETTERS, 2018, 15 (04)
[10]   Machine Learning Methods for Control of Fibre Lasers with Double Gain Nonlinear Loop Mirror [J].
Kokhanovskiy, Alexey ;
Ivanenko, Aleksey ;
Kobtsev, Sergey ;
Smirnov, Sergey ;
Turitsyn, Sergey .
SCIENTIFIC REPORTS, 2019, 9 (1)