POSITIVE SOLUTIONS FOR ELLIPTIC EQUATIONS RELATED TO THE CAFFARELLI-KOHN-NIRENBERG INEQUALITIES

被引:2
作者
Deng, Yinbin [1 ]
Jin, Lingyu [2 ]
Peng, Shuangjie [1 ]
机构
[1] Huazhong Normal Univ, Sch Math & Stat, Wuhan 430079, Peoples R China
[2] S China Agr Univ, Coll Sci, Guangzhou 510642, Guangdong, Peoples R China
关键词
Caffarelli-Kohn-Nirenberg inequalities; degeneracy; singularity; critical point; CRITICAL SOBOLEV EXPONENTS; INTERPOLATION INEQUALITIES; SHARP CONSTANTS; EXISTENCE; NONEXISTENCE; WEIGHTS;
D O I
10.1142/S0219199709003338
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we are concerned with the following elliptic problems which are related to the well-known Caffarelli-Kohn-Nirenberg inequalities: -div(vertical bar x vertical bar-(2a)del u) - lambda vertical bar x vertical bar(-eE)u = vertical bar x vertical bar(-bp)vertical bar u vertical bar(p-2)u + eta vertical bar x vertical bar(-dD)vertical bar u vertical bar(q-2)u in Omega u = 0 on partial derivative Omega, (0.1) where a = b < 0,p = 2N/N-2 (N >= 3), a <= d <= a + 1, a <= e <= a +1, D = 2N/N-2-2(a-d), E = 2N/N-2-2(a-e), 2 < q < D, lambda and eta are real constants. We obtain positive solutions for problem (0.1). Moreover, we establish a corresponding Pohozaev identity for problem (0.1), from which, the nonexistence of positive solutions for problem ( 0.1) is obtained.
引用
收藏
页码:185 / 199
页数:15
相关论文
共 17 条
[1]  
AUBIN T, 1975, CR ACAD SCI A MATH, V280, P279
[2]   Existence and non-existence of solutions to elliptic equations related to the Caffarelli-Kohn-Nirenberg inequalities [J].
Bartsch, Thomas ;
Peng, Shuangjie ;
Zhang, Zhitao .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2007, 30 (01) :113-136
[3]   POSITIVE SOLUTIONS OF NON-LINEAR ELLIPTIC-EQUATIONS INVOLVING CRITICAL SOBOLEV EXPONENTS [J].
BREZIS, H ;
NIRENBERG, L .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1983, 36 (04) :437-477
[4]  
CAFFARELLI L, 1984, COMPOS MATH, V53, P259
[5]   A note on the sign-changing solutions to elliptic problems with critical Sobolev and Hardy terms [J].
Cao, DM ;
Peng, SJ .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2003, 193 (02) :424-434
[6]  
Catrina F, 2001, COMMUN PUR APPL MATH, V54, P229, DOI 10.1002/1097-0312(200102)54:2<229::AID-CPA4>3.0.CO
[7]  
2-I
[8]   ON THE BEST CONSTANT FOR A WEIGHTED SOBOLEV-HARDY INEQUALITY [J].
CHOU, KS ;
CHU, CW .
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1993, 48 :137-151
[9]   Existence of solutions for singular critical growth semilinear elliptic equations [J].
Ferrero, A ;
Gazzola, F .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2001, 177 (02) :494-522
[10]   QUASILINEAR ELLIPTIC-EQUATIONS INVOLVING CRITICAL SOBOLEV EXPONENTS [J].
GUEDDA, M ;
VERON, L .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1989, 13 (08) :879-902