SRFEL dynamics investigated with a 1-D numerical code

被引:5
|
作者
Thomas, CA
Botman, JIM
De Ninno, G
Couprie, ME
Mezi, L
Dattoli, G
机构
[1] Eindhoven Univ Technol, NL-5600 MB Eindhoven, Netherlands
[2] Univ Paris 11, LURE, F-91405 Orsay, France
[3] CEA Saclay, DSM, DRECAM, SPAN, F-91191 Gif Sur Yvette, France
[4] ENEA, Rome, Italy
来源
NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT | 2002年 / 483卷 / 1-2期
关键词
free electron laser; dynamics; storage rings;
D O I
10.1016/S0168-9002(02)00308-X
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
Designing a Storage Ring Free Electron Laser or improving the performance of an existing one first requires investigation of its longitudinal dynamics. With this aim, a 1-dimensional model, including energy spread and Microwave Instability (MI) effects, has been implemented in a numerical code. The code solves the differential equations of the longitudinal complex amplitude of the intra-cavity electric field, coupled with the differential equations describing the evolution of the electron bunch energy spread and of the MI. The agreement with experimental results of the Super-ACO FEL is also discussed. (C) 2002 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:181 / 185
页数:5
相关论文
共 50 条
  • [1] NUMERICAL-SIMULATION OF 1-D SOLITON DYNAMICS
    PEREIRA, NR
    DENAVIT, J
    SUDAN, RN
    BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1974, 19 (09): : 893 - 894
  • [2] NUMERICAL-SIMULATION OF GLAUBER DYNAMICS IN THE 1-D BEG MODEL
    MENDES, JFF
    LAGE, EJS
    PHYSICS LETTERS A, 1991, 159 (1-2) : 13 - 16
  • [3] A VALIDATION STUDY of the BWIC Code, a 1-D Large Signal Code
    Jia, Dongdong
    Yin, Hairong
    Cheng, Jun
    Zhang, Jian
    Xu, Jin
    Yin, Pengcheng
    Luo, Jinjing
    Yang, Ruichao
    Guo, Ziqi
    Li, Hongru
    Yue, Lingna
    Wang, Wengxiang
    Wei, YanYu
    2021 46TH INTERNATIONAL CONFERENCE ON INFRARED, MILLIMETER AND TERAHERTZ WAVES (IRMMW-THZ), 2021,
  • [4] BEM theory: How to take into account the radial flow inside of a 1-D numerical code
    Lanzafame, R.
    Messina, M.
    RENEWABLE ENERGY, 2012, 39 (01) : 440 - 446
  • [5] Comparison of 1-D/1-D Fusion Method and 1-D/1-D Hybrid Method in Two-Dimensional Neutron Transport Problems: Convergence Analysis and Numerical Results
    Yuk, Seungsu
    Cho, Nam Zin
    NUCLEAR SCIENCE AND ENGINEERING, 2016, 184 (02) : 151 - 167
  • [6] Thermodynamics and dynamics of a 1-D gravitational system
    Valageas, P
    ASTRONOMY & ASTROPHYSICS, 2006, 450 (02) : 445 - 459
  • [7] An Effective Method of 1-D Bar Code Image Identification
    Xu, Yong
    Yuan, Yue
    Dong, Huabing
    Quan, Yuhui
    2013 IEEE 16TH INTERNATIONAL CONFERENCE ON COMPUTATIONAL SCIENCE AND ENGINEERING (CSE 2013), 2013, : 490 - 494
  • [8] INCLUSION OF IMPURITY EQUATIONS IN 1-D DIFFUSION CODE OF FAR
    MERCIER, C
    PAPOULAR, R
    SOUBBARAMAYER
    WERKOFF, F
    PLASMA PHYSICS AND CONTROLLED FUSION, 1976, 18 (11) : 873 - 874
  • [9] Development of a 1-D Electrostatic Particle-in-Cell Code
    Singh, Priti
    Majumder, A.
    Pulhani, A. K.
    Sridhar, G.
    Maiti, Namita
    IEEE TRANSACTIONS ON PLASMA SCIENCE, 2021, 49 (10) : 3257 - 3267
  • [10] NUMERICAL SIMULATIONS OF THE 1-D MODIFIED BURGERS EQUATION
    Robaina, Diogo T.
    Gonzaga de Oliveira, Sanderson L.
    Kischinhevsky, Mauricio
    Osthoff, Carla
    Sena, Alexandre C.
    2019 WINTER SIMULATION CONFERENCE (WSC), 2019, : 3231 - 3242