Curvilinear virtual elements for contact mechanics

被引:32
作者
Aldakheel, Fadi [1 ]
Hudobivnik, Blaz [1 ]
Artioli, Edoardo [2 ]
da Veiga, Lourenco Beirao [3 ]
Wriggers, Peter [1 ]
机构
[1] Leibniz Univ Hannover LUH, Inst Continuum Mech IKM, Univ 1, D-30823 Garbsen, Germany
[2] Univ Roma Tor Vergata, Dept Civil Engn & Comp Sci, Via Politecn 1, I-00133 Rome, Italy
[3] Univ Milano Bicocca, Dept Math & Applicat, Via R Cozzi 55, I-20125 Milan, Italy
基金
欧洲研究理事会;
关键词
Virtual element method (VEM); Curved edges; Contact discretization; Non-conforming mesh; STRAIN 8-NODE HEXAHEDRON; ISOGEOMETRIC ANALYSIS; FORMULATION; FRAMEWORK; MESHES;
D O I
10.1016/j.cma.2020.113394
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The virtual element method (VEM) for curved edges with applications to contact mechanics is outlined within this work. VEM allows the use of non-matching meshes at interfaces with the advantage that these can be mapped to a simple node to-node contact formulation. To account for exact approximation of complex geometries at interfaces, we developed a VEM technology for contact that considers curved edges. A number of numerical examples illustrate the robustness and accuracy of this discretization technique. The results are very promising and underline the advantages of the new VEM formulation for contact between two elastic bodies in the presence of curved interfaces. (C) 2020 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
引用
收藏
页数:19
相关论文
共 59 条
  • [1] A global-local approach for hydraulic phase-field fracture in poroelastic media
    Aldakheel, Fadi
    Noii, Nima
    Wick, Thomas
    Wriggers, Peter
    [J]. COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2021, 91 : 99 - 121
  • [2] A microscale model for concrete failure in poro-elasto-plastic media
    Aldakheel, Fadi
    [J]. THEORETICAL AND APPLIED FRACTURE MECHANICS, 2020, 107 (107)
  • [3] Virtual elements for finite thermo-plasticity problems
    Aldakheel, Fadi
    Hudobivnik, Blaz
    Wriggers, Peter
    [J]. COMPUTATIONAL MECHANICS, 2019, 64 (05) : 1347 - 1360
  • [4] VIRTUAL ELEMENT FORMULATION FOR PHASE-FIELD MODELING OF DUCTILE FRACTURE
    Aldakheel, Fadi
    Hudobivnik, Blai
    Wriggers, Peter
    [J]. INTERNATIONAL JOURNAL FOR MULTISCALE COMPUTATIONAL ENGINEERING, 2019, 17 (02) : 181 - 200
  • [5] Phase-field modeling of brittle fracture using an efficient virtual element scheme
    Aldakheel, Fadi
    Hudobivnik, Blaz
    Hussein, Ali
    Wriggers, Peter
    [J]. COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2018, 341 : 443 - 466
  • [6] [Anonymous], 2002, Fundamentals of Modeling Interfacial Phenomena in Nonlinear Finite Element Analysis
  • [7] An adaptive curved virtual element method for the statistical homogenization of random fibre-reinforced composites
    Artioli, E.
    da Veiga, L. Beirao
    Verani, M.
    [J]. FINITE ELEMENTS IN ANALYSIS AND DESIGN, 2020, 177
  • [8] VEM-based tracking algorithm for cohesive/frictional 2D fracture
    Artioli, E.
    Marfia, S.
    Sacco, E.
    [J]. COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2020, 365
  • [9] Algebraic cubature on polygonal elements with a circular edge
    Artioli, E.
    Sommariva, A.
    Vianello, M.
    [J]. COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2020, 79 (07) : 2057 - 2066
  • [10] Curvilinear Virtual Elements for 2D solid mechanics applications
    Artioli, E.
    da Veiga, L. Beirao
    Dassi, F.
    [J]. COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2020, 359