Early Feasibility of Automated Artificial Intelligence Angiography Based Fractional Flow Reserve Estimation

被引:21
作者
Roguin, Ariel [1 ,2 ]
Abu Dogosh, Ala [3 ]
Feld, Yair [2 ,4 ]
Konigstein, Maayan [5 ,6 ]
Lerman, Amir [7 ]
Koifman, Edward [3 ]
机构
[1] Hillel Yaffe Med Ctr Hadera, Dept Cardiol, Haifa, Israel
[2] Technion Israel Inst Technol, Ruth & Bruce Rappaport Fac Med, Haifa, Israel
[3] Ben Gurion Univ Negev, Fac Hlth Sci, Soroka Med Ctr, Beer Sheva, Israel
[4] Rambam Hlth Care Campus, Dept Cardiol, Haifa, Israel
[5] Tel Aviv Sourasky Med Ctr, Dept Cardiol, Tel Aviv, Israel
[6] Sackler Sch Med, Tel Aviv, Israel
[7] Mayo Clin, Coll Med & Sci, Dept Cardiovasc Dis, Rochester, MN USA
关键词
PERCUTANEOUS CORONARY INTERVENTION; DIAGNOSTIC-ACCURACY; VISUAL ASSESSMENT; FOLLOW-UP; PCI; GUIDANCE; OUTCOMES;
D O I
10.1016/j.amjcard.2020.10.022
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Despite the evidence of improved patients' outcome, fractional flow reserve (FFR) is underused in current everyday practice. We aimed to evaluate the feasibility of a novel automated artificial intelligence angiography-based FFR software (AutocathFFR) as a decision supporting tool for interventional cardiologists. AutocathFFR was performed on angiographic images of patients who underwent coronary angiography with a pressure wire FFR measurement. Sensitivity and specificity for detection of FFR cut-off of 0.8 were calculated. Thirty-one patients were included in the present study, with a mean age of 64 +/- 10 years, 80% were males, 32% patients had diabetes, 39% had previous percutaneous coronary intervention. The left anterior descending artery was the target vessel in 80% of patients. Automatic lesion detection was successful in all of the lesions with FFR value of <= 0.8. The sensitivity of AutocathFFR for predicting a wire based FFR <= 0.8 was 88% and the specificity for FFR >0.8 was 93%, with a positive predictive value of 94% and negative predictive value of 87%, indicating an accuracy level of 90% and area under the curve of 0.91. AutocathFFR has excellent accuracy in prediction of wire based FFR and is a promising technology that may facilitate appropriate decision and treatment choices for coronary artery disease patients. (C) 2020 Elsevier Inc. All rights reserved.
引用
收藏
页码:8 / 14
页数:7
相关论文
共 27 条
[1]   Deep Learning in Cardiology [J].
Bizopoulos, Paschalis ;
Koutsouris, Dimitrios .
IEEE REVIEWS IN BIOMEDICAL ENGINEERING, 2019, 12 :168-193
[2]   Deep learning algorithms for detection of critical findings in head CT scans: a retrospective study [J].
Chilamkurthy, Sasank ;
Ghosh, Rohit ;
Tanamala, Swetha ;
Biviji, Mustafa ;
Campeau, Norbert G. ;
Venugopal, Vasantha Kumar ;
Mahajan, Vidur ;
Rao, Pooja ;
Warier, Prashant .
LANCET, 2018, 392 (10162) :2388-2396
[3]   Fractional Flow Reserve-Guided PCI versus Medical Therapy in Stable Coronary Disease [J].
De Bruyne, Bernard ;
Pijls, Nico H. J. ;
Kalesan, Bindu ;
Barbato, Emanuele ;
Tonino, Pim A. L. ;
Piroth, Zsolt ;
Jagic, Nikola ;
Mobius-Winckler, Sven ;
Rioufol, Gilles ;
Witt, Nils ;
Kala, Petr ;
MacCarthy, Philip ;
Engstrom, Thomas ;
Oldroyd, Keith G. ;
Mavromatis, Kreton ;
Manoharan, Ganesh ;
Verlee, Peter ;
Frobert, Ole ;
Curzen, Nick ;
Johnson, Jane B. ;
Jueni, Peter ;
Fearon, William F. .
NEW ENGLAND JOURNAL OF MEDICINE, 2012, 367 (11) :991-1001
[4]   Accuracy of Fractional Flow Reserve Derived From Coronary Angiography [J].
Fearon, William F. ;
Achenbach, Stephan ;
Engstrom, Thomas ;
Assali, Abid ;
Shlofmitz, Richard ;
Jeremias, Allen ;
Fournier, Stephane ;
Kirtane, Ajay J. ;
Kornowski, Ran ;
Greenberg, Gabriel ;
Jubeh, Rami ;
Kolansky, Daniel M. ;
McAndrew, Thomas ;
Dressler, Ovidiu ;
Maehara, Akiko ;
Matsumura, Mitsuaki ;
Leon, Martin B. ;
De Bruyne, Bernard .
CIRCULATION, 2019, 139 (04) :477-484
[5]   Clinical Outcomes and Cost-Effectiveness of Fractional Flow Reserve-Guided Percutaneous Coronary Intervention in Patients With Stable Coronary Artery Disease: Three-Year Follow-Up of the FAME 2 Trial (Fractional Flow Reserve Versus Angiography for Multivessel Evaluation) [J].
Fearon, William F. ;
Nishi, Takeshi ;
De Bruyne, Bernard ;
Boothroyd, Derek B. ;
Barbato, Emanuele ;
Tonino, Pim ;
Juni, Peter ;
Pijls, Nico H. J. ;
Hlatky, Mark A. .
CIRCULATION, 2018, 137 (05) :480-487
[6]   Comparison between visual assessment and quantitative angiography versus fractional flow reserve for native coronary narrowings of moderate severity [J].
Fischer, JJ ;
Samady, H ;
McPherson, JA ;
Sarembock, IJ ;
Powers, ER ;
Gimple, LW ;
Ragosta, M .
AMERICAN JOURNAL OF CARDIOLOGY, 2002, 90 (03) :210-215
[7]   Long-term Survival in Patients Undergoing Percutaneous Interventions With or Without Intracoronary Pressure Wire Guidance or Intracoronary Ultrasonographic Imaging A Large Cohort Study [J].
Froehlich, Georg M. ;
Redwood, Simon ;
Rakhit, Roby ;
MacCarthy, Philip A. ;
Lim, Pitt ;
Crake, Tom ;
White, Steven K. ;
Knight, Charles J. ;
Kustosz, Christoph ;
Knapp, Guido ;
Dalby, Miles C. ;
Mali, Iqbal S. ;
Archbold, Andrew ;
Wragg, Andrew ;
Timmis, Adam D. ;
Meier, Pascal .
JAMA INTERNAL MEDICINE, 2014, 174 (08) :1360-1366
[8]   Comparison of interventional cardiology in two European countries: A nationwide internet based registry study [J].
Gudnason, T. ;
Gudnadottir, G. S. ;
Lagerqvist, B. ;
Eyjolfsson, K. ;
Nilsson, T. ;
Thorgeirsson, G. ;
Thorgeirsson, G. ;
Andersen, K. ;
James, S. .
INTERNATIONAL JOURNAL OF CARDIOLOGY, 2013, 168 (02) :1237-1242
[9]   Real-world use of fractional flow reserve in Germany: results of the prospective ALKK coronary angiography and PCI registry [J].
Haerle, Tobias ;
Zeymer, Uwe ;
Hochadel, Matthias ;
Zahn, Ralf ;
Kerber, Sebastian ;
Zrenner, Bernhard ;
Schaechinger, Volker ;
Lauer, Bernward ;
Runde, Thorsten ;
Elsaesser, Albrecht .
CLINICAL RESEARCH IN CARDIOLOGY, 2017, 106 (02) :140-150
[10]   Validation of a three-dimensional quantitative coronary angiography-based software to calculate fractional flow reserve: the FAST study [J].
Masdjedi, Kaneshka ;
van Zandvoort, Laurens J. C. ;
Balbi, Matthew M. ;
Gijsen, Frank J. H. ;
Ligthart, Jurgen M. R. ;
Rutten, Marcel C. M. ;
Lemmert, Miguel E. ;
Wilschut, Jeroen M. ;
Diletti, Roberto ;
de Jaegere, Peter ;
Zijlstra, Felix ;
Van Mieghem, Nicolas M. ;
Daemen, Joost .
EUROINTERVENTION, 2020, 16 (07) :591-599