Effective parameters of elastic composites

被引:26
作者
Ammari, Habib [1 ]
Kang, Hyeonbae
Lim, Mikyoung
机构
[1] Ecole Polytech, Ctr Math Appl, F-91128 Palaiseau, France
[2] Seoul Natl Univ, Sch Math Sci, Seoul 151747, South Korea
关键词
effective properties; composite elastic materials; layer potentials; elastic moment tensor;
D O I
10.1512/iumj.2006.55.2681
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we present a simple and rigorous scheme for the derivation of accurate asymptotic expansions of the effective elastic parameters of periodic dilute two-phase composites in terms of the elastic moment tensor and the volume fraction occupied by the elastic inclusions. Our derivations are based on layer potential techniques, and valid for inclusions with Lipschitz boundaries and even when the phase moduli differ significantly.
引用
收藏
页码:903 / 922
页数:20
相关论文
共 42 条
[11]  
Douglas JF, 1995, ADV CHEM PHYS, V91, P85, DOI 10.1002/9780470141502.ch2
[12]  
DOUGLAS JF, 1996, PHYS REV E, V53, P6169
[13]   REGULARITY PROPERTIES OF SOLUTIONS TO TRANSMISSION PROBLEMS [J].
ESCAURIAZA, L ;
SEO, JK .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1993, 338 (01) :405-430
[14]  
FRANCFORT G, 1991, CR ACAD SCI I-MATH, V312, P301
[15]  
FRIEDMAN A, 1995, IMA VOLUMES MATH ITS, V67, pCH15
[16]  
GREENGARD L, 1994, ACTA NUMERICA, P379
[17]   RHEOLOGICAL PROPERTIES OF DILUTE SUSPENSIONS OF CENTRALLY SYMMETRIC BROWNIAN PARTICLES AT SMALL SHEAR RATES [J].
HABER, S ;
BRENNER, H .
JOURNAL OF COLLOID AND INTERFACE SCIENCE, 1984, 97 (02) :496-514
[18]   ANALYSIS OF COMPOSITE-MATERIALS - A SURVEY [J].
HASHIN, Z .
JOURNAL OF APPLIED MECHANICS-TRANSACTIONS OF THE ASME, 1983, 50 (03) :481-505
[19]   CAVITIES VIS-A-VIS RIGID INCLUSIONS - ELASTIC-MODULI OF MATERIALS WITH POLYGONAL INCLUSIONS [J].
JASIUK, I .
INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES, 1995, 32 (3-4) :407-422
[20]   CONDUCTION THROUGH A RANDOM SUSPENSION OF SPHERES [J].
JEFFREY, DJ .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL AND PHYSICAL SCIENCES, 1973, 335 (1602) :355-367