Effective parameters of elastic composites

被引:26
作者
Ammari, Habib [1 ]
Kang, Hyeonbae
Lim, Mikyoung
机构
[1] Ecole Polytech, Ctr Math Appl, F-91128 Palaiseau, France
[2] Seoul Natl Univ, Sch Math Sci, Seoul 151747, South Korea
关键词
effective properties; composite elastic materials; layer potentials; elastic moment tensor;
D O I
10.1512/iumj.2006.55.2681
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we present a simple and rigorous scheme for the derivation of accurate asymptotic expansions of the effective elastic parameters of periodic dilute two-phase composites in terms of the elastic moment tensor and the volume fraction occupied by the elastic inclusions. Our derivations are based on layer potential techniques, and valid for inclusions with Lipschitz boundaries and even when the phase moduli differ significantly.
引用
收藏
页码:903 / 922
页数:20
相关论文
共 42 条
[1]  
Ammari H, 2005, ASYMPTOTIC ANAL, V41, P119
[2]   Polarization tensors and effective properties of anisotropic composite materials [J].
Ammari, H ;
Kang, H ;
Kim, K .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2005, 215 (02) :401-428
[3]   Properties of the generalized polarization tensors [J].
Ammari, H ;
Kang, HB .
MULTISCALE MODELING & SIMULATION, 2003, 1 (02) :335-348
[4]   Complete asymptotic expansions of solutions of the system of elastostatics in the presence of an inclusion of small diameter and detection of an inclusion [J].
Ammari, H ;
Kang, H ;
Nakamura, G ;
Tanuma, K .
JOURNAL OF ELASTICITY, 2002, 67 (02) :97-129
[5]  
AMMARI H, 2004, LECT NOTES MATH, V1846
[7]   A general representation formula for boundary voltage perturbations caused by internal conductivity inhomogeneities of low volume fraction [J].
Capdeboscq, Y ;
Vogelius, MS .
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2003, 37 (01) :159-173
[8]  
Cioranescu D., 1999, OXFORD LECT SERIES M, V17
[9]  
Collin R., 1991, FIELD THEORY GUIDED
[10]   BOUNDARY-VALUE PROBLEMS FOR THE SYSTEMS OF ELASTOSTATICS IN LIPSCHITZ-DOMAINS [J].
DAHLBERG, BEJ ;
KENIG, CE ;
VERCHOTA, GC .
DUKE MATHEMATICAL JOURNAL, 1988, 57 (03) :795-818