GENERIC UNIQUENESS CONDITIONS FOR THE CANONICAL POLYADIC DECOMPOSITION AND INDSCAL

被引:53
作者
Domanov, Ignat [1 ,2 ,3 ]
De lathauwer, Lieven [1 ,2 ,3 ]
机构
[1] KU Leuven Kulak, Grp Sci Engn & Technol, B-8500 Kortrijk, Belgium
[2] Katholieke Univ Leuven, Dept Elect Engn ESAT STADIUS, B-3001 Leuven Heverlee, Belgium
[3] Katholieke Univ Leuven, ESAT STADIUS, iMinds Med IT, B-3001 Leuven, Belgium
基金
欧洲研究理事会;
关键词
canonical polyadic decomposition; CANDECOMP/PARAFAC decomposition; INDSCAL; third-order tensor; uniqueness; algebraic geometry; TENSOR DECOMPOSITIONS; IDENTIFIABILITY; RANK; TERMS;
D O I
10.1137/140970276
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We find conditions that guarantee that a decomposition of a generic third-order tensor in a minimal number of rank-1 tensors (canonical polyadic decomposition (CPD)) is unique up to a permutation of rank-1 tensors. Then we consider the case when the tensor and all its rank-1 terms have symmetric frontal slices (INDSCAL). Our results complement the existing bounds for generic uniqueness of the CPD and relax the existing bounds for INDSCAL. The derivation makes use of algebraic geometry. We stress the power of the underlying concepts for proving generic properties in mathematical engineering.
引用
收藏
页码:1567 / 1589
页数:23
相关论文
共 25 条
[1]   Refined methods for the identifiability of tensors [J].
Bocci, Cristiano ;
Chiantini, Luca ;
Ottaviani, Giorgio .
ANNALI DI MATEMATICA PURA ED APPLICATA, 2014, 193 (06) :1691-1702
[2]   ANALYSIS OF INDIVIDUAL DIFFERENCES IN MULTIDIMENSIONAL SCALING VIA AN N-WAY GENERALIZATION OF ECKART-YOUNG DECOMPOSITION [J].
CARROLL, JD ;
CHANG, JJ .
PSYCHOMETRIKA, 1970, 35 (03) :283-&
[3]   AN ALGORITHM FOR GENERIC AND LOW-RANK SPECIFIC IDENTIFIABILITY OF COMPLEX TENSORS [J].
Chiantini, Luca ;
Ottaviani, Giorgio ;
Vannieuwenhoven, Nick .
SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2014, 35 (04) :1265-1287
[4]   ON GENERIC IDENTIFIABILITY OF 3-TENSORS OF SMALL RANK [J].
Chiantini, Luca ;
Ottaviani, Giorgio .
SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2012, 33 (03) :1018-1037
[5]  
Cichocki A., 2009, NONNEGATIVE MATRIX T, DOI [10.1002/9780470747278, DOI 10.1002/9780470747278]
[6]   Tensor Decompositions for Signal Processing Applications [J].
Cichocki, Andrzej ;
Mandic, Danilo P. ;
Anh Huy Phan ;
Caiafa, Cesar F. ;
Zhou, Guoxu ;
Zhao, Qibin ;
De Lathauwer, Lieven .
IEEE SIGNAL PROCESSING MAGAZINE, 2015, 32 (02) :145-163
[7]  
Comon P, 2010, HANDBOOK OF BLIND SOURCE SEPARATION: INDEPENDENT COMPONENT ANALYSIS AND APPLICATIONS, P1
[8]   Tensor decompositions, alternating least squares and other tales [J].
Comon, P. ;
Luciani, X. ;
de Almeida, A. L. F. .
JOURNAL OF CHEMOMETRICS, 2009, 23 (7-8) :393-405
[9]   DECOMPOSITIONS OF A HIGHER-ORDER TENSOR IN BLOCK TERMS-PART II: DEFINITIONS AND UNIQUENESS [J].
De Lathauwer, Lieven .
SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2008, 30 (03) :1033-1066
[10]  
De Lathauwer L, 2011, INT SYMP IMAGE SIG, P558