Uniform priors on convex sets improve risk

被引:23
作者
Hartigan, JA [1 ]
机构
[1] Yale Univ, Dept Stat, New Haven, CT 06520 USA
基金
美国国家科学基金会;
关键词
uniform priors; Bayes estimators; squared error loss; improving risk; convex sets; multivariate normal;
D O I
10.1016/j.spl.2004.01.009
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Let X be spherical normal with mean theta lying in a closed convex set C with a non-empty interior and a non-empty complement. For the prior distribution uniform over C, the mean squared error risk of the generalized Bayes estimator is less than or equal to that of X for theta is an element of C. It is equal to that of X if and only if C is a cone, and theta is an apex of the cone. (C) 2004 Elsevier B.V. All rights reserved.
引用
收藏
页码:285 / 288
页数:4
相关论文
共 6 条
[2]   ESTIMATING A BOUNDED NORMAL-MEAN [J].
CASELLA, G ;
STRAWDERMAN, WE .
ANNALS OF STATISTICS, 1981, 9 (04) :870-878
[3]   MINIMAX RISK OVER HYPERRECTANGLES, AND IMPLICATIONS [J].
DONOHO, DL ;
LIU, RC ;
MACGIBBON, B .
ANNALS OF STATISTICS, 1990, 18 (03) :1416-1437
[4]   ON THE ESTIMATION OF A RESTRICTED NORMAL-MEAN [J].
GATSONIS, C ;
MACGIBBON, B ;
STRAWDERMAN, W .
STATISTICS & PROBABILITY LETTERS, 1987, 6 (01) :21-30
[5]  
LEVIT B, 1980, THEOR PROBAB APPL, V25, P561
[6]  
Marchand É, 2001, ANN STAT, V29, P1078