The number of spanning trees of a graph

被引:5
作者
Das, Kinkar C. [1 ]
Cevik, Ahmet S. [2 ]
Cangul, Ismail N. [3 ]
机构
[1] Sungkyunkwan Univ, Dept Math, Suwon 440746, South Korea
[2] Selcuk Univ, Fac Sci, Dept Math, TR-42075 Campus, Konya, Turkey
[3] Uludag Univ, Fac Arts & Sci, Dept Math, TR-16059 Bursa, Turkey
来源
JOURNAL OF INEQUALITIES AND APPLICATIONS | 2013年
基金
新加坡国家研究基金会;
关键词
graph; spanning trees; independence number; clique number; first Zagreb index; MOLECULAR-ORBITALS; ZAGREB INDEXES;
D O I
10.1186/1029-242X-2013-395
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let G be a simple connected graph of order n, m edges, maximum degree Delta(1) and minimum degree delta. Li et al. (Appl. Math. Lett. 23: 286-290, 2010) gave an upper bound on number of spanning trees of a graph in terms of n, m, Delta(1) and delta: t(G) <= delta (2m-Delta(1)-delta-1/n-3)(n-3). The equality holds if and only if G congruent to K-1,K-n-1, G congruent to K-n, G congruent to K-1 boolean OR (K-1 boolean OR Kn-2) or G congruent to K-n - e, where e is any edge of K-n. Unfortunately, this upper bound is erroneous. In particular, we show that this upper bound is not true for complete graph K-n. In this paper we obtain some upper bounds on the number of spanning trees of graph G in terms of its structural parameters such as the number of vertices (n), the number of edges (m), maximum degree (Delta(1)), second maximum degree (Delta(2)), minimum degree (delta), independence number (alpha), clique number (omega). Moreover, we give the Nordhaus-Gaddum-type result for number of spanning trees.
引用
收藏
页数:13
相关论文
共 22 条