Topological Floquet engineering of twisted bilayer graphene

被引:42
作者
Topp, Gabriel E. [1 ]
Jotzu, Gregor [1 ]
McIver, James W. [1 ]
Xian, Lede [1 ]
Rubio, Angel [1 ,2 ]
Sentef, Michael A. [1 ]
机构
[1] Max Planck Inst Struct & Dynam Matter, Luruper Chaussee 149, D-22761 Hamburg, Germany
[2] Flatiron Inst, Ctr Computat Quantum Phys CCQ, 162 Fifth Ave, New York, NY 10010 USA
来源
PHYSICAL REVIEW RESEARCH | 2019年 / 1卷 / 02期
基金
欧洲研究理事会;
关键词
LIGHT-INDUCED SUPERCONDUCTIVITY; MAGIC-ANGLE; PERIODICALLY DRIVEN; QUANTUM; STATES; REALIZATION; CHEMISTRY; INSULATOR; BEHAVIOR; BANDS;
D O I
10.1103/PhysRevResearch.1.023031
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We investigate the topological properties of Floquet-engineered twisted bilayer graphene above the so-called magic angle driven by circularly polarized laser pulses. Employing a full Moire-unit-cell tight-binding Hamiltonian based on first-principles electronic structure, we show that the band topology in the bilayer, at twisting angles above 1.05 degrees, essentially corresponds to the one of single-layer graphene. However, the ability to open topologically trivial gaps in this system by a bias voltage between the layers enables the full topological phase diagram to be explored, which is not possible in single-layer graphene. Circularly polarized light induces a transition to a topologically nontrivial Floquet band structure with the Berry curvature analogous to a Chern insulator. Importantly, the twisting allows for tuning electronic energy scales, which implies that the electronic bandwidth can be tailored to match realistic driving frequencies in the ultraviolet or midinfrared photon-energy regimes. This implies that Moire superlattices are an ideal playground for combining twistronics, Floquet engineering, and strongly interacting regimes out of thermal equilibrium.
引用
收藏
页数:12
相关论文
共 75 条
[21]   Atoms and molecules in cavities, from weak to strong coupling in quantum-electrodynamics (QED) chemistry [J].
Flick, Johannes ;
Ruggenthaler, Michael ;
Appel, Heiko ;
Rubio, Angel .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2017, 114 (12) :3026-3034
[22]   Multiterminal Conductance of a Floquet Topological Insulator [J].
Foa Torres, L. E. F. ;
Perez-Piskunow, P. M. ;
Balseiro, C. A. ;
Usaj, Gonzalo .
PHYSICAL REVIEW LETTERS, 2014, 113 (26)
[23]  
Gonzalez-Tudela A., ARXIV190706126CONDMA
[24]   Floquet Fractional Chern Insulators [J].
Grushin, Adolfo G. ;
Gomez-Leon, Alvaro ;
Neupert, Titus .
PHYSICAL REVIEW LETTERS, 2014, 112 (15)
[26]   Effective time-independent description of optical lattices with periodic driving [J].
Hemmerich, Andreas .
PHYSICAL REVIEW A, 2010, 81 (06)
[27]   Creating stable Floquet-Weyl semimetals by laser-driving of 3D Dirac materials [J].
Hubener, Hannes ;
Sentef, Michael A. ;
De Giovannini, Umberto ;
Kemper, Alexander F. ;
Rubio, Angel .
NATURE COMMUNICATIONS, 2017, 8
[28]   Experimental realization of the topological Haldane model with ultracold fermions [J].
Jotzu, Gregor ;
Messer, Michael ;
Desbuquois, Remi ;
Lebrat, Martin ;
Uehlinger, Thomas ;
Greif, Daniel ;
Esslinger, Tilman .
NATURE, 2014, 515 (7526) :237-U191
[29]  
Kennedy CJ, 2015, NAT PHYS, V11, P859, DOI [10.1038/NPHYS3421, 10.1038/nphys3421]
[30]  
Kennes D. M., ARXIV190504025CONDMA