Large displacement dynamic analysis with frictional contact by linear complementarity formulation

被引:4
|
作者
Sung, JH [1 ]
Kwak, BM [1 ]
机构
[1] Korea Adv Inst Sci & Technol, Dept Engn Mech, Yusong Gu, Taejon 305701, South Korea
关键词
complementarity; contact; friction; nonlinear dynamics; total Lagrangian;
D O I
10.1016/S0045-7949(02)00037-8
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
The linear complementarity formulation used for 2-D frictional contact conditions is combined with the method of a large displacement nonlinear dynamic analysis. The solution procedure is based on the total Lagrangian formulation and a single step time integration with a predictor and corrector scheme. For contact searching, a hierarchical scheme with a circular territory is used. Impact time and positions are detected using a second-order approximation of displacements and the velocity discontinuities during impact are considered using an impact condition. The formulation is illustrated by means of three numerical examples. (C) 2002 Elsevier Science Ltd. All rights reserved.
引用
收藏
页码:977 / 988
页数:12
相关论文
共 50 条
  • [21] An alternative formulation for quasi-static frictional and cohesive contact problems
    P. Areias
    A. Pinto da Costa
    T. Rabczuk
    F. J. M. Queirós de Melo
    D. Dias-da-Costa
    Mourad Bezzeghoud
    Computational Mechanics, 2014, 53 : 807 - 824
  • [22] Partitioned formulation of frictional contact problems using localized Lagrange multipliers
    González, JA
    Park, KC
    Felippa, CA
    COMMUNICATIONS IN NUMERICAL METHODS IN ENGINEERING, 2006, 22 (04): : 319 - 333
  • [23] Dynamic frictional contact of a viscoelastic beam
    Campo, Marco
    Fernandez, Jose R.
    Stavroulakis, Georgios E.
    Viano, Juan M.
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2006, 40 (02): : 295 - 310
  • [24] Homogenization in non-linear dynamics due to frictional contact
    Peillex, G.
    Baillet, L.
    Berthier, Y.
    INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES, 2008, 45 (09) : 2451 - 2469
  • [25] Isogeometric collocation for nonlinear dynamic analysis of Cosserat rods with frictional contact
    Weeger, Oliver
    Narayanan, Bharath
    Dunn, Martin L.
    NONLINEAR DYNAMICS, 2018, 91 (02) : 1213 - 1227
  • [26] Finite element simulation of dynamic instabilities in frictional sliding contact
    Baillet, L
    Linck, V
    D'Errico, S
    Laulagnet, B
    Berthier, Y
    JOURNAL OF TRIBOLOGY-TRANSACTIONS OF THE ASME, 2005, 127 (03): : 652 - 657
  • [27] BEM FRICTIONAL CONTACT ANALYSIS - MODELING CONSIDERATIONS
    MAN, KW
    ALIABADI, MH
    ROOKE, DP
    ENGINEERING ANALYSIS WITH BOUNDARY ELEMENTS, 1993, 11 (01) : 77 - 85
  • [28] Nonholonomic elastoplastic analysis involving frictional contact
    Xia, SH
    Tin-Loi, F
    COMPUTATIONAL MECHANICS, VOLS 1 AND 2, PROCEEDINGS: NEW FRONTIERS FOR THE NEW MILLENNIUM, 2001, : 707 - 712
  • [29] Solution of dynamic frictional contact problems using nondifferentiable optimization
    Czekanski, A
    Meguid, SA
    INTERNATIONAL JOURNAL OF MECHANICAL SCIENCES, 2001, 43 (06) : 1369 - 1386
  • [30] Isogeometric collocation for nonlinear dynamic analysis of Cosserat rods with frictional contact
    Oliver Weeger
    Bharath Narayanan
    Martin L. Dunn
    Nonlinear Dynamics, 2018, 91 : 1213 - 1227