Widespread, rapid grounding line retreat of Pine Island, Thwaites, Smith, and Kohler glaciers, West Antarctica, from 1992 to 2011

被引:590
作者
Rignot, E. [1 ,2 ]
Mouginot, J. [1 ]
Morlighem, M. [1 ]
Seroussi, H. [2 ]
Scheuchl, B. [1 ]
机构
[1] Univ Calif Irvine, Dept Earth Syst Sci, Irvine, CA 92697 USA
[2] CALTECH, Jet Prop Lab, Pasadena, CA USA
基金
美国国家航空航天局;
关键词
Antarctica; mass balance; interferometry; glacier dynamics; marine instability; MASS-LOSS; ICE; STABILITY; BED; GREENLAND;
D O I
10.1002/2014GL060140
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
We measure the grounding line retreat of glaciers draining the Amundsen Sea sector of West Antarctica using Earth Remote Sensing (ERS-1/2) satellite radar interferometry from 1992 to 2011. Pine Island Glacier retreated 31 km at its center, with most retreat in 2005-2009 when the glacier ungrounded from its ice plain. Thwaites Glacier retreated 14 km along its fast flow core and 1 to 9 km along the sides. Haynes Glacier retreated 10 km along its flanks. Smith/Kohler glaciers retreated the most, 35 km along its ice plain, and its ice shelf pinning points are vanishing. These rapid retreats proceed along regions of retrograde bed elevation mapped at a high spatial resolution using a mass conservation technique that removes residual ambiguities from prior mappings. Upstream of the 2011 grounding line positions, we find no major bed obstacle that would prevent the glaciers from further retreat and draw down the entire basin.
引用
收藏
页码:3502 / 3509
页数:8
相关论文
共 32 条
[1]  
Favier L, 2014, NAT CLIM CHANGE, V4, P117, DOI [10.1038/NCLIMATE2094, 10.1038/nclimate2094]
[2]   Bedmap2: improved ice bed, surface and thickness datasets for Antarctica [J].
Fretwell, P. ;
Pritchard, H. D. ;
Vaughan, D. G. ;
Bamber, J. L. ;
Barrand, N. E. ;
Bell, R. ;
Bianchi, C. ;
Bingham, R. G. ;
Blankenship, D. D. ;
Casassa, G. ;
Catania, G. ;
Callens, D. ;
Conway, H. ;
Cook, A. J. ;
Corr, H. F. J. ;
Damaske, D. ;
Damm, V. ;
Ferraccioli, F. ;
Forsberg, R. ;
Fujita, S. ;
Gim, Y. ;
Gogineni, P. ;
Griggs, J. A. ;
Hindmarsh, R. C. A. ;
Holmlund, P. ;
Holt, J. W. ;
Jacobel, R. W. ;
Jenkins, A. ;
Jokat, W. ;
Jordan, T. ;
King, E. C. ;
Kohler, J. ;
Krabill, W. ;
Riger-Kusk, M. ;
Langley, K. A. ;
Leitchenkov, G. ;
Leuschen, C. ;
Luyendyk, B. P. ;
Matsuoka, K. ;
Mouginot, J. ;
Nitsche, F. O. ;
Nogi, Y. ;
Nost, O. A. ;
Popov, S. V. ;
Rignot, E. ;
Rippin, D. M. ;
Rivera, A. ;
Roberts, J. ;
Ross, N. ;
Siegert, M. J. .
CRYOSPHERE, 2013, 7 (01) :375-393
[3]   GLACIOLOGY Ice-sheet advance in Antarctica [J].
Gillet-Chaulet, Fabien ;
Durand, Gael .
NATURE, 2010, 467 (7317) :794-795
[4]  
Gogineni P., 2012, CRESIS RDS DATA
[5]   Ice-shelf buttressing and the stability of marine ice sheets [J].
Gudmundsson, G. H. .
CRYOSPHERE, 2013, 7 (02) :647-655
[6]   New boundary conditions for the West Antarctic Ice Sheet: Subglacial topography of the Thwaites and Smith glacier catchments [J].
Holt, JW ;
Blankenship, DD ;
Morse, DL ;
Young, DA ;
Peters, ME ;
Kempf, SD ;
Richter, TG ;
Vaughan, DG ;
Corr, HFJ .
GEOPHYSICAL RESEARCH LETTERS, 2006, 33 (09)
[7]  
Jacobs SS, 2011, NAT GEOSCI, V4, P519, DOI [10.1038/NGEO1188, 10.1038/ngeo1188]
[8]  
Jamieson SSR, 2012, NAT GEOSCI, V5, P799, DOI [10.1038/NGEO1600, 10.1038/ngeo1600]
[9]   Stability of ice-sheet grounding lines [J].
Katz, Richard F. ;
Worster, M. Grae .
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2010, 466 (2118) :1597-1620
[10]   Continental scale, high order, high spatial resolution, ice sheet modeling using the Ice Sheet System Model (ISSM) [J].
Larour, E. ;
Seroussi, H. ;
Morlighem, M. ;
Rignot, E. .
JOURNAL OF GEOPHYSICAL RESEARCH-EARTH SURFACE, 2012, 117