A systems biology perspective on the role of WRKY transcription factors in drought responses in plants

被引:201
作者
Tripathi, Prateek [1 ]
Rabara, Roel C. [2 ]
Rushton, Paul J. [2 ]
机构
[1] Univ So Calif, Dept Biol Sci, Dana & David Dornsife Coll Letters Arts & Sci, Los Angeles, CA 90089 USA
[2] Texas A&M AgriLife Res, Dallas, TX 75252 USA
基金
美国食品与农业研究所;
关键词
Systems biology; WRKY; Drought; Water-deficit; Abiotic stress; Crop improvement; ABIOTIC STRESS TOLERANCE; DNA-BINDING PROTEINS; ABSCISIC-ACID; ARABIDOPSIS-THALIANA; FUNCTIONAL-ANALYSIS; DISEASE-RESISTANCE; LEAF SENESCENCE; GENES; EXPRESSION; RICE;
D O I
10.1007/s00425-013-1985-y
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Drought is one of the major challenges affecting crop productivity and yield. However, water stress responses are notoriously multigenic and quantitative with strong environmental effects on phenotypes. It is also clear that water stress often does not occur alone under field conditions but rather in conjunction with other abiotic stresses such as high temperature and high light intensities. A multidisciplinary approach with successful integration of a whole range of -omics technologies will not only define the system, but also provide new gene targets for both transgenic approaches and marker-assisted selection. Transcription factors are major players in water stress signaling and some constitute major hubs in the signaling webs. The main transcription factors in this network include MYB, bHLH, bZIP, ERF, NAC, and WRKY transcription factors. The role of WRKY transcription factors in abiotic stress signaling networks is just becoming apparent and systems biology approaches are starting to define their places in the signaling network. Using systems biology approaches, there are now many transcriptomic analyses and promoter analyses that concern WRKY transcription factors. In addition, reports on nuclear proteomics have identified WRKY proteins that are up-regulated at the protein level by water stress. Interactomics has started to identify different classes of WRKY-interacting proteins. What are often lacking are connections between metabolomics, WRKY transcription factors, promoters, biosynthetic pathways, fluxes and downstream responses. As more levels of the system are characterized, a more detailed understanding of the roles of WRKY transcription factors in drought responses in crops will be obtained.
引用
收藏
页码:255 / 266
页数:12
相关论文
共 85 条
[1]   WRKY: its structure, evolutionary relationship, DNA-binding selectivity, role in stress tolerance and development of plants [J].
Agarwal, Parinita ;
Reddy, M. P. ;
Chikara, Jitendra .
MOLECULAR BIOLOGY REPORTS, 2011, 38 (06) :3883-3896
[2]   Co-expression of AtbHLH17 and AtWRKY28 confers resistance to abiotic stress in Arabidopsis [J].
Babitha, K. C. ;
Ramu, S. V. ;
Pruthvi, V. ;
Mahesh, Patil ;
Nataraja, Karaba N. ;
Udayakumar, M. .
TRANSGENIC RESEARCH, 2013, 22 (02) :327-341
[3]   Drought and salt tolerance in plants [J].
Bartels, D ;
Sunkar, R .
CRITICAL REVIEWS IN PLANT SCIENCES, 2005, 24 (01) :23-58
[4]   Characterization of WRKY co-regulatory networks in rice and Arabidopsis [J].
Berri, Stefano ;
Abbruscato, Pamela ;
Faivre-Rampant, Odile ;
Brasileiro, Ana C. M. ;
Fumasoni, Irene ;
Satoh, Kouji ;
Kikuchi, Shoshi ;
Mizzi, Luca ;
Morandini, Piero ;
Pe, Mario Enrico ;
Piffanelli, Pietro .
BMC PLANT BIOLOGY, 2009, 9
[5]   WRKY54 and WRKY70 co-operate as negative regulators of leaf senescence in Arabidopsis thaliana [J].
Besseau, Sebastien ;
Li, Jing ;
Palva, E. Tapio .
JOURNAL OF EXPERIMENTAL BOTANY, 2012, 63 (07) :2667-2679
[6]   Evidence for Network Evolution in an Arabidopsis Interactome Map [J].
Braun, Pascal ;
Carvunis, Anne-Ruxandra ;
Charloteaux, Benoit ;
Dreze, Matija ;
Ecker, Joseph R. ;
Hill, David E. ;
Roth, Frederick P. ;
Vidal, Marc ;
Galli, Mary ;
Balumuri, Padmavathi ;
Bautista, Vanessa ;
Chesnut, Jonathan D. ;
Kim, Rosa Cheuk ;
de los Reyes, Chris ;
Gilles, Patrick, II ;
Kim, Christopher J. ;
Matrubutham, Uday ;
Mirchandani, Jyotika ;
Olivares, Eric ;
Patnaik, Suswapna ;
Quan, Rosa ;
Ramaswamy, Gopalakrishna ;
Shinn, Paul ;
Swamilingiah, Geetha M. ;
Wu, Stacy ;
Ecker, Joseph R. ;
Dreze, Matija ;
Byrdsong, Danielle ;
Dricot, Amelie ;
Duarte, Melissa ;
Gebreab, Fana ;
Gutierrez, Bryan J. ;
MacWilliams, Andrew ;
Monachello, Dario ;
Mukhtar, M. Shahid ;
Poulin, Matthew M. ;
Reichert, Patrick ;
Romero, Viviana ;
Tam, Stanley ;
Waaijers, Selma ;
Weiner, Evan M. ;
Vidal, Marc ;
Hill, David E. ;
Braun, Pascal ;
Galli, Mary ;
Carvunis, Anne-Ruxandra ;
Cusick, Michael E. ;
Dreze, Matija ;
Romero, Viviana ;
Roth, Frederick P. .
SCIENCE, 2011, 333 (6042) :601-607
[7]   Proteomic profiling of tandem affinity purified 14-3-3 protein complexes in Arabidopsis thaliana [J].
Chang, Ing-Feng ;
Curran, Amy ;
Woolsey, Rebekah ;
Quilici, David ;
Cushman, John C. ;
Mittler, Ron ;
Harmon, Alice ;
Harper, Jeffrey F. .
PROTEOMICS, 2009, 9 (11) :2967-2985
[8]   Structural and Functional Analysis of VQ Motif-Containing Proteins in Arabidopsis as Interacting Proteins of WRKY Transcription Factors [J].
Cheng, Yuan ;
Zhou, Yuan ;
Yang, Yan ;
Chi, Ying-Jun ;
Zhou, Jie ;
Chen, Jian-Ye ;
Wang, Fei ;
Fan, Baofang ;
Shi, Kai ;
Zhou, Yan-Hong ;
Yu, Jing-Quan ;
Chen, Zhixiang .
PLANT PHYSIOLOGY, 2012, 159 (02) :810-+
[9]   Dehydration-responsive Nuclear Proteome of Rice (Oryza sativa L.) Illustrates Protein Network, Novel Regulators of Cellular Adaptation, and Evolutionary Perspective [J].
Choudhary, Mani Kant ;
Basu, Debarati ;
Datta, Asis ;
Chakraborty, Niranjan ;
Chakraborty, Subhra .
MOLECULAR & CELLULAR PROTEOMICS, 2009, 8 (07) :1579-1598
[10]   Global approaches for telling time: Omics and the Arabidopsis circadian clock [J].
Chow, Brenda Y. ;
Kay, Steve A. .
SEMINARS IN CELL & DEVELOPMENTAL BIOLOGY, 2013, 24 (05) :383-392