Nonpositone discrete boundary value problems

被引:32
作者
Agarwal, RP
O'Regan, D
机构
[1] Natl Univ Singapore, Dept Math, Singapore 117548, Singapore
[2] Natl Univ Ireland Univ Coll Galway, Dept Math, Galway, Ireland
关键词
nonpositive; discrete; nonnegative solutions; conical shell fixed point theorem;
D O I
10.1016/S0362-546X(98)00183-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The goal of this study is to establish the existence of a nonnegative solution to a given discrete boundary value problem, in particular a nonpositone problem. The technique involves using the well-known conical shell fixed point theorem.
引用
收藏
页码:207 / 215
页数:9
相关论文
共 9 条
[1]  
Agarwal R.P., 1997, Advanced Topics in Difference Equations, DOI 10.1007/978-94-015-8899-7
[2]   Boundary value problems for discrete equations [J].
Agarwal, RP ;
ORegan, D .
APPLIED MATHEMATICS LETTERS, 1997, 10 (04) :83-89
[3]  
AGARWAL RP, IN PRESS COMPUT MATH
[4]  
Agarwal RP, 1992, Difference equations and inequalities
[5]   FIXED-POINT EQUATIONS AND NONLINEAR EIGENVALUE PROBLEMS IN ORDERED BANACH-SPACES [J].
AMANN, H .
SIAM REVIEW, 1976, 18 (04) :620-709
[6]   Existence results for superlinear semipositone BVP's [J].
Anuradha, V ;
Hai, DD ;
Shivaji, R .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1996, 124 (03) :757-763
[7]  
Deimling K., 1985, NONLINEAR FUNCTIONAL, DOI DOI 10.1007/978-3-662-00547-7
[8]   NONZERO SOLUTIONS OF BOUNDARY-VALUE PROBLEMS FOR SECOND-ORDER ORDINARY AND DELAY-DIFFERENTIAL EQUATIONS [J].
GUSTAFSON, GB ;
SCHMITT, K .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1972, 12 (01) :129-+
[9]  
O'Regan D., 1997, Existence Theory for nonlinear ordinary differential equations