A multiscale, biophysical model of flow-induced red blood cell damage

被引:35
作者
Vitale, Flavia [1 ,2 ]
Nam, Jaewook [1 ,3 ]
Turchetti, Luca [4 ]
Behr, Marek [5 ]
Raphael, Robert [6 ,7 ,8 ]
Annesini, Maria Cristina [2 ]
Pasquali, Matteo [1 ,7 ,8 ,9 ]
机构
[1] Rice Univ, Dept Chem & Biomol Engn, Houston, TX 77005 USA
[2] Univ Roma La Sapienza, Dept Chem Engn Mat & Environm, I-00184 Rome, Italy
[3] Sungkyunkwan Univ, Sch Chem Engn, Suwon 440746, Gyeonggi Do, South Korea
[4] Univ Campus Biomed Roma, Fac Engn, I-00128 Rome, Italy
[5] Rhein Westfal TH Aachen, Chair Computat Anal Tech Syst CATS, Ctr Computat Engn Sci CCES, D-52056 Aachen, Germany
[6] Rice Univ, Dept Bioengn, Houston, TX 77005 USA
[7] Rice Univ, Ken Kennedy Inst Informat Technol, Houston, TX 77005 USA
[8] Rice Univ, Smalley Inst Nanoscale Sci & Technol, Houston, TX 77005 USA
[9] Rice Univ, Dept Mat Sci & NanoEngn, Dept Chem, Houston, TX 77005 USA
基金
美国国家科学基金会;
关键词
red blood cell; computational fluid dynamics (CFD); membrane poration; hemolysis modeling; INDUCED HEMOLYSIS; SHEAR-STRESS; MECHANICAL-PROPERTIES; MEMBRANE; ELECTROPORATION; ERYTHROCYTES; DEFORMATION; DEPENDENCE; MODULUS; TRAUMA;
D O I
10.1002/aic.14318
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
A new model for mechanically induced red blood cell damage is presented. Incorporating biophysical insight at multiple length scales, the model couples flow-induced deformation of the cell membrane (similar to 10 mu m) to membrane permeabilization and hemoglobin transport (similar to 100 nm). We estimate hemolysis in macroscopic (above similar to 1 mm) 2-D inhomogeneous blood flow by computational fluid dynamics (CFD) and compare results with literature models. Simulations predict the effects of local flow field on RBC damage, due to the combined contribution of membrane permeabilization and hemoglobin transport. The multiscale approach developed here lays a foundation for a predictive tool for the optimization of hydrodynamic and hematologic design of cardiovascular prostheses and blood purification devices. (c) 2014 American Institute of Chemical Engineers AIChE J, 60: 1509-1516, 2014
引用
收藏
页码:1509 / 1516
页数:8
相关论文
共 49 条
  • [1] [Anonymous], 1992, INTERMOLECULAR SURFA
  • [2] A tensor-based measure for estimating blood damage
    Arora, D
    Behr, M
    Pasquali, M
    [J]. ARTIFICIAL ORGANS, 2004, 28 (11) : 1002 - 1015
  • [3] A Tensor-based Measure for Estimating Blood Damage (vol 28, pg 1002, 2004)
    Arora, D.
    [J]. ARTIFICIAL ORGANS, 2012, 36 (05) : 500 - 500
  • [4] Hemolysis estimation in a centrifugal blood pump using a tensor-based measure
    Arora, Dhruv
    Behr, Marek
    Pasquali, Matteo
    [J]. ARTIFICIAL ORGANS, 2006, 30 (07) : 539 - 547
  • [5] A review of computational fluid dynamics analysis of blood pumps
    Behbahani, M.
    Behr, M.
    Hormes, M.
    Steinseifer, U.
    Arora, D.
    Coronado, O.
    Pasquali, M.
    [J]. EUROPEAN JOURNAL OF APPLIED MATHEMATICS, 2009, 20 : 363 - 397
  • [6] FINITE-ELEMENT SOLUTION STRATEGIES FOR LARGE-SCALE FLOW SIMULATIONS
    BEHR, M
    TEZDUYAR, TE
    [J]. COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1994, 112 (1-4) : 3 - 24
  • [7] Performance analysis of ventricular assist devices using finite element flow simulation
    Behr, M
    Arora, D
    Nosé, Y
    Motomura, T
    [J]. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2004, 46 (12) : 1201 - 1210
  • [8] Behr Marek, 2003, Computer Methods in Biomechanics and Biomedical Engineering, V6, P113, DOI 10.1080/1025584031000091650
  • [9] Blackshear P., 1987, Handbook of Bioengineering, V15, P1
  • [10] CHANGES IN MEMBRANE-STRUCTURE INDUCED BY ELECTROPORATION AS REVEALED BY RAPID-FREEZING ELECTRON-MICROSCOPY
    CHANG, DC
    REESE, TS
    [J]. BIOPHYSICAL JOURNAL, 1990, 58 (01) : 1 - 12