MATCHED ASYMPTOTIC EXPANSION METHOD FOR A HOMOGENIZED INTERFACE MODEL

被引:4
作者
Geymonat, Giuseppe [1 ]
Hendili, Sofiane [2 ]
Krasucki, Francoise [3 ]
Vidrascu, Marina [4 ,5 ]
机构
[1] Ecole Polytech, UMR CNRS 7649, Mecan Solides Lab, F-91128 Palaiseau, France
[2] CEA, Lab Modelisat & Simulat Struct, DEN, DANS,DM2S,SEMT, F-91191 Gif Sur Yvette, France
[3] Univ Montpellier 2, UMR CNRS 5149, I3M, F-34095 Montpellier 5, France
[4] INRIA Rocquencourt, EPI REO, F-78153 Le Chesnay, France
[5] Univ Paris 06, UMR CNRS 7958, Lab Jacques Louis Lions, F-75252 Paris, France
关键词
Multi-materials; multi-scaling; asymptotic analysis; elasticity; numerical experiments; EFFECTIVE BEHAVIOR;
D O I
10.1142/S0218202513500607
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Our aim is to demonstrate the effectiveness of the matched asymptotic expansion method in obtaining a simplified model for the influence of small identical heterogeneities periodically distributed on an internal surface on the overall response of a linearly elastic body. The results of several numerical experiments corroborate the precise identification of the different steps, in particular of the outer/inner regions with their normalized coordinate systems and the scale separation, leading to the model.
引用
收藏
页码:573 / 597
页数:25
相关论文
共 25 条
[1]   The effective behavior of a fiber bridged crack [J].
Abdelmoula, R ;
Marigo, JJ .
JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS, 2000, 48 (11) :2419-2444
[2]  
Bellieud M., J ELASTICITY
[3]  
Bensoussan A., 1987, ASYMPTOTIC ANAL PERI
[4]   Multi-materials with strong interface: Variational modelings [J].
Bessoud, Anne Laure ;
Krasucki, Francoise ;
Michaille, Gerard .
ASYMPTOTIC ANALYSIS, 2009, 61 (01) :1-19
[5]   Plate-like and shell-like inclusions with high rigidity [J].
Bessoud, Anne-Laure ;
Krasucki, Francoise ;
Serpilli, Michele .
COMPTES RENDUS MATHEMATIQUE, 2008, 346 (11-12) :697-702
[6]   Asymptotic Analysis of Shell-like Inclusions with High Rigidity [J].
Bessoud, Anne-Laure ;
Krasucki, Francoise ;
Serpilli, Michele .
JOURNAL OF ELASTICITY, 2011, 103 (02) :153-172
[7]  
Ciarlet P.G, 2002, FINITE ELEMENT METHO, DOI DOI 10.1137/1.9780898719208
[8]   Homogenized Interface Model Describing Inhomogeneities Located on a Surface [J].
David, M. ;
Marigo, J-J ;
Pideri, C. .
JOURNAL OF ELASTICITY, 2012, 109 (02) :153-187
[9]   Mathematical analysis of a bonded joint with a soft thin adhesive [J].
Geymonat, G ;
Krasucki, F ;
Lenci, S .
MATHEMATICS AND MECHANICS OF SOLIDS, 1999, 4 (02) :201-225
[10]  
Geymonat G., COMPUTER METHO UNPUB