Metal-organic frameworks for electrochemical applications

被引:210
|
作者
Liu, Wei [1 ]
Yin, Xue-Bo [1 ]
机构
[1] Nankai Univ, Tianjin Key Lab Biosensing & Mol Recognit, Collaborat Innovat Ctr Chem Sci & Engn Tianjin, Res Ctr Analyt Sci,Coll Chem,State Key Lab Med Ch, Tianjin 300071, Peoples R China
关键词
Metal-organic frameworks; Electrochemistry; Redox-active complex; Mass or energy conversion; Electrochemical sensor; CARBON-PASTE ELECTRODE; ELECTRICAL-CONDUCTIVITY; PALLADIUM NANOPARTICLES; COORDINATION POLYMER; SENSING APPLICATIONS; SENSITIVE DETECTION; CHARGE-TRANSFER; THIN-FILMS; REDOX; OXIDATION;
D O I
10.1016/j.trac.2015.07.011
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Electrochemical devices are fast, sensitive, accurate, and convenient as sensing and mass or energy conversion platforms. Metal-organic frameworks (MOFs) attract much attention because of their intriguing properties. MOFs have great potential for electrochemical applications, but two challenges are confronted, including the design of redox-active MOFs (ra-MOFs) and the improvement of MOF conductivity. Redox or catalytic active sites can be introduced using active ligands or metal ions, and active complexes as building blocks. MOFs can also hold active guest molecules, enzymes, bacteria, and nanoparticles and promote electrochemical activity. In order to improve MOF conductivity, conductive ligands and metal nodes are rational choices to form long-range delocalized electrons for charge mobility. Integrating guest molecules or mixing with electrical conductors is the alternative. The MOF film attached on the substrate surface facilitates direct electron transfer and device building. High sensitivity and selectivity of MOF-based electrochemical sensors and improved mass or energy conversion are anticipated. (C) 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:86 / 96
页数:11
相关论文
共 50 条
  • [21] Green applications of metal-organic frameworks
    Ajoyan, Zvart
    Marino, Paola
    Howarth, Ashlee J.
    CRYSTENGCOMM, 2018, 20 (39) : 5899 - 5912
  • [22] Industrial applications of metal-organic frameworks
    Czaja, Alexander U.
    Trukhan, Natalia
    Mueller, Ulrich
    CHEMICAL SOCIETY REVIEWS, 2009, 38 (05) : 1284 - 1293
  • [23] Metal-Organic Frameworks for Energy Applications
    Wang, Hailong
    Zhu, Qi-Long
    Zou, Ruqiang
    Xu, Qiang
    CHEM, 2017, 2 (01): : 52 - 80
  • [24] Metal-Organic Frameworks for Biomedical Applications
    Yang, Jie
    Yang, Ying-Wei
    SMALL, 2020, 16 (10)
  • [25] Metal-organic frameworks for photocatalysis applications
    Li, Shenshen
    Chen, Yu-Sheng
    Mulfort, Karen
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2013, 245
  • [26] Metal-organic frameworks for energy applications
    Hu, Yun Hang
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2010, 240
  • [27] Potential applications of metal-organic frameworks
    Kuppler, Ryan J.
    Timmons, Daren J.
    Fang, Qian-Rong
    Li, Jian-Rong
    Makal, Trevor A.
    Young, Mark D.
    Yuan, Daqiang
    Zhao, Dan
    Zhuang, Wenjuan
    Zhou, Hong-Cai
    COORDINATION CHEMISTRY REVIEWS, 2009, 253 (23-24) : 3042 - 3066
  • [28] Emerging applications of metal-organic frameworks
    Ricco, Raffaele
    Pfeiffer, Constance
    Sumida, Kenji
    Sumby, Christopher J.
    Falcaro, Paolo
    Furukawa, Shuhei
    Champness, Neil R.
    Doonan, Christian J.
    CRYSTENGCOMM, 2016, 18 (35): : 6532 - 6542
  • [29] Metal-organic frameworks and their catalytic applications
    Alhumaimess, Mosaed S.
    JOURNAL OF SAUDI CHEMICAL SOCIETY, 2020, 24 (06) : 461 - 473
  • [30] Metal-Organic Frameworks: Synthesis and Applications
    Champness, Neil R.
    ACTA CRYSTALLOGRAPHICA A-FOUNDATION AND ADVANCES, 2012, 68 : S9 - S9