Metal-organic frameworks for electrochemical applications

被引:219
作者
Liu, Wei [1 ]
Yin, Xue-Bo [1 ]
机构
[1] Nankai Univ, Tianjin Key Lab Biosensing & Mol Recognit, Collaborat Innovat Ctr Chem Sci & Engn Tianjin, Res Ctr Analyt Sci,Coll Chem,State Key Lab Med Ch, Tianjin 300071, Peoples R China
关键词
Metal-organic frameworks; Electrochemistry; Redox-active complex; Mass or energy conversion; Electrochemical sensor; CARBON-PASTE ELECTRODE; ELECTRICAL-CONDUCTIVITY; PALLADIUM NANOPARTICLES; COORDINATION POLYMER; SENSING APPLICATIONS; SENSITIVE DETECTION; CHARGE-TRANSFER; THIN-FILMS; REDOX; OXIDATION;
D O I
10.1016/j.trac.2015.07.011
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Electrochemical devices are fast, sensitive, accurate, and convenient as sensing and mass or energy conversion platforms. Metal-organic frameworks (MOFs) attract much attention because of their intriguing properties. MOFs have great potential for electrochemical applications, but two challenges are confronted, including the design of redox-active MOFs (ra-MOFs) and the improvement of MOF conductivity. Redox or catalytic active sites can be introduced using active ligands or metal ions, and active complexes as building blocks. MOFs can also hold active guest molecules, enzymes, bacteria, and nanoparticles and promote electrochemical activity. In order to improve MOF conductivity, conductive ligands and metal nodes are rational choices to form long-range delocalized electrons for charge mobility. Integrating guest molecules or mixing with electrical conductors is the alternative. The MOF film attached on the substrate surface facilitates direct electron transfer and device building. High sensitivity and selectivity of MOF-based electrochemical sensors and improved mass or energy conversion are anticipated. (C) 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:86 / 96
页数:11
相关论文
共 73 条
[1]   Solvothermal Preparation of an Electrocatalytic Metalloporphyrin MOF Thin Film and its Redox Hopping Charge-Transfer Mechanism [J].
Ahrenholtz, Spencer R. ;
Epley, Charity C. ;
Morris, Amanda J. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2014, 136 (06) :2464-2472
[2]   Patterned Growth of Metal-Organic Framework Coatings by Electrochemical Synthesis [J].
Ameloot, Rob ;
Stappers, Linda ;
Fransaer, Jan ;
Alaerts, Luc ;
Sels, Bert F. ;
De Vos, Dirk E. .
CHEMISTRY OF MATERIALS, 2009, 21 (13) :2580-2582
[3]   Composite Polymer Electrolytes Encompassing Metal Organic Frame Works: A New Strategy for All-Solid-State Lithium Batteries [J].
Angulakshmi, N. ;
Kumar, R. Senthil ;
Kulandainathan, M. Anbu ;
Stephan, A. Manuel .
JOURNAL OF PHYSICAL CHEMISTRY C, 2014, 118 (42) :24240-24247
[4]  
[Anonymous], 1996, REV EXPANDED
[5]   Oriented crystallisation on supports and anisotropic mass transport of the metal-organic framework manganese formate [J].
Arnold, Mirko ;
Kortunov, Pavel ;
Jones, Deborah J. ;
Nedellec, Yannig ;
Kaerger, Joerg ;
Caro, Juergen .
EUROPEAN JOURNAL OF INORGANIC CHEMISTRY, 2007, (01) :60-64
[6]   Tetrahedron-structured DNA and functional oligonucleotide for construction of an electrochemical DNA-based biosensor [J].
Bu, Nan-Nan ;
Tang, Chun-Xia ;
He, Xi-Wen ;
Yin, Xue-Bo .
CHEMICAL COMMUNICATIONS, 2011, 47 (27) :7689-7691
[7]   Enhanced Hydrogen Storage by Palladium Nanoparticles Fabricated in a Redox-Active Metal-Organic Framework [J].
Cheon, Young Eun ;
Suh, Myunghyun Paik .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2009, 48 (16) :2899-2903
[8]  
Compton R.G., 2013, Electrochemistry: Nanoelectrochemistry, V12
[9]   Influence of the Benzoquinone Sorption on the Structure and Electrochemical Performance of the MIL-53(Fe) Hybrid Porous Material in a Lithium-Ion Battery [J].
de Combarieu, G. ;
Morcrette, M. ;
Millange, F. ;
Guillou, N. ;
Cabana, J. ;
Grey, C. P. ;
Margiolaki, I. ;
Ferey, G. ;
Tarascon, J. -M. .
CHEMISTRY OF MATERIALS, 2009, 21 (08) :1602-1611
[10]   Nanoscale Metal-Organic Frameworks for Biomedical Imaging and Drug Delivery [J].
Della Rocca, Joseph ;
Liu, Demin ;
Lin, Wenbin .
ACCOUNTS OF CHEMICAL RESEARCH, 2011, 44 (10) :957-968