Novel AgoshRNA molecules for silencing of the CCR5 co-receptor for HIV-1 infection

被引:14
作者
Herrera-Carrillo, Elena [1 ]
Ben Berkhout [1 ]
机构
[1] Univ Amsterdam, Acad Med Ctr, Ctr Infect & Immun Amsterdam CINIMA, Lab Expt Virol,Dept Med Microbiol, Amsterdam, Netherlands
来源
PLOS ONE | 2017年 / 12卷 / 05期
关键词
STEM-CELL TRANSPLANTATION; SHORT-INTERFERING RNAS; GENE-THERAPY; LENTIVIRAL VECTORS; MAMMALIAN-CELLS; SYSTEMATIC ANALYSIS; T-CELLS; SHRNA; DICER; EXPRESSION;
D O I
10.1371/journal.pone.0177935
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Allogeneic transplantation of blood stem cells from a CCR5-Delta 32 homozygous donor to an HIV-infected individual, the "Berlin patient", led to a cure. Since then there has been a search for approaches that mimic this intervention in a gene therapy setting. RNA interference (RNAi) has evolved as a powerful tool to regulate gene expression in a sequence-specific manner and can be used to inactivate the CCR5 mRNA. Short hairpin RNA (shRNA) mole-cules can impair CCR5 expression, but these molecules may cause unintended side effects and they will not be processed in cells that lack Dicer, such as monocytes. Dicer-independent RNAi pathways have opened opportunities for new AgoshRNA designs that rely exclusively on Ago2 for maturation. Furthermore, AgoshRNA processing yields a single active guide RNA, thus reducing off-target effects. In this study, we tested different AgoshRNA designs against CCR5. We selected AgoshRNAs that potently downregulated CCR5 expression on human T cells and peripheral blood mononuclear cells (PBMC) and that had no apparent adverse effect on T cell development as assessed in a competitive cell growth assay. CCR5 knockdown significantly protected T cells from CCR5 tropic HIV-1 infection.
引用
收藏
页数:19
相关论文
共 71 条
[1]   Stable reduction of CCR5 by RNAi through hematopoietic stem cell transplant in non-human primates [J].
An, Dong Sung ;
Donahue, Robert E. ;
Karnata, Masakazu ;
Poon, Betty ;
Metzger, Mark ;
Mao, Si-Hua ;
Bonifacino, Aylin ;
Krouse, Allen E. ;
Darlix, Jean-Luc ;
Baltimore, David ;
Qin, F. Xiao-Feng ;
Chen, Irvin S. Y. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2007, 104 (32) :13110-13115
[2]   THE HUMAN LEUKEMIA-CELL LINE, THP-1 - A MULTIFACETED MODEL FOR THE STUDY OF MONOCYTE-MACROPHAGE DIFFERENTIATION [J].
AUWERX, J .
EXPERIENTIA, 1991, 47 (01) :22-31
[3]   Towards improved shRNA and miRNA reagents as inhibitors of HIV-1 replication [J].
Berkhout, Ben ;
Liu, Ying Poi .
FUTURE MICROBIOLOGY, 2014, 9 (04) :561-571
[4]   Induction of an interferon response by RNAi vectors in mammalian cells [J].
Bridge, AJ ;
Pebernard, S ;
Ducraux, A ;
Nicoulaz, AL ;
Iggo, R .
NATURE GENETICS, 2003, 34 (03) :263-264
[5]   A Dicer-independent miRNA biogenesis pathway that requires Ago catalysis [J].
Cheloufi, Sihem ;
Dos Santos, Camila O. ;
Chong, Mark M. W. ;
Hannon, Gregory J. .
NATURE, 2010, 465 (7298) :584-U76
[6]   Targeted genome engineering in human cells with the Cas9 RNA-guided endonuclease [J].
Cho, Seung Woo ;
Kim, Sojung ;
Kim, Jong Min ;
Kim, Jin-Soo .
NATURE BIOTECHNOLOGY, 2013, 31 (03) :230-232
[7]   A Novel miRNA Processing Pathway Independent of Dicer Requires Argonaute2 Catalytic Activity [J].
Cifuentes, Daniel ;
Xue, Huiling ;
Taylor, David W. ;
Patnode, Heather ;
Mishima, Yuichiro ;
Cheloufi, Sihem ;
Ma, Enbo ;
Mane, Shrikant ;
Hannon, Gregory J. ;
Lawson, Nathan D. ;
Wolfe, Scot A. ;
Giraldez, Antonio J. .
SCIENCE, 2010, 328 (5986) :1694-1698
[8]   Absence of DICER in Monocytes and Its Regulation by HIV-1 [J].
Coley, William ;
Van Duyne, Rachel ;
Carpio, Lawrence ;
Guendel, Irene ;
Kehn-Hall, Kylene ;
Chevalier, Sebastien ;
Narayanan, Aarthi ;
Luu, Truong ;
Lee, Norman ;
Klase, Zachary ;
Kashanchi, Fatah .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2010, 285 (42) :31930-31943
[9]  
Dharmacon, SID CENT
[10]   Beyond receptor expression: The influence of receptor conformation, density, and affinity in HIV-1 infection [J].
Doms, RW .
VIROLOGY, 2000, 276 (02) :229-237