Skin lesion classification using ensembles of multi -resolution EfficientNets with meta data

被引:169
作者
Gessert, Nils [1 ,2 ]
Nielsen, Maximilian [2 ,3 ]
Shaikh, Mohsin [2 ,3 ]
Werner, Rene [2 ,3 ]
Schlaefer, Alexander [1 ,2 ]
机构
[1] Hamburg Univ Technol, Inst Med Technol, Hamburg, Germany
[2] Forschungszentrum Med Tech Hamburg, DAISYlab, Hamburg, Germany
[3] Univ Med Ctr Hamburg Eppendorf, Inst Computat Neurosci, Hamburg, Germany
关键词
Deep Learning; Multi-class skin lesion classification; Convolutional neural networks;
D O I
10.1016/j.mex.2020.100864
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
In this paper, we describe our method for the ISIC 2019 Skin Lesion Classification Challenge. The challenge comes with two tasks. For task 1, skin lesions have to be classified based on dermoscopic images. For task 2, dermoscopic images and additional patient meta data are used. Our deep learning-based method achieved first place for both tasks. The are several problems we address with our method. First, there is an unknown class in the test set which we cover with a data-driven approach. Second, there is a severe class imbalance that we address with loss balancing. Third, there are images with different resolutions which motivates two different cropping strategies and multi-crop evaluation. Last, there is patient meta data available which we incorporate with a dense neural network branch. We address skin lesion classification with an ensemble of deep learning models including EfficientNets, SENet, and ResNeXt WSL, selected by a search strategy. We rely on multiple model input resolutions and employ two cropping strategies for training. We counter severe class imbalance with a loss balancing approach. We predict an additional, unknown class with a data-driven approach and we make use of patient meta data with an additional input branch. (C) 2020 The Author(s). Published by Elsevier B.V.
引用
收藏
页数:8
相关论文
共 15 条
[11]   Exploring the Limits of Weakly Supervised Pretraining [J].
Mahajan, Dhruv ;
Girshick, Ross ;
Ramanathan, Vignesh ;
He, Kaiming ;
Paluri, Manohar ;
Li, Yixuan ;
Bharambe, Ashwin ;
van der Maaten, Laurens .
COMPUTER VISION - ECCV 2018, PT II, 2018, 11206 :185-201
[12]   Rethinking the Inception Architecture for Computer Vision [J].
Szegedy, Christian ;
Vanhoucke, Vincent ;
Ioffe, Sergey ;
Shlens, Jon ;
Wojna, Zbigniew .
2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, :2818-2826
[13]  
Tan MX, 2019, PR MACH LEARN RES, V97
[14]   The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions [J].
Tschandl, Philipp ;
Rosendahl, Cliff ;
Kittler, Harald .
SCIENTIFIC DATA, 2018, 5
[15]   Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study [J].
Tschandl, Philipp ;
Codella, Noel ;
Akay, Bengu Nisa ;
Argenziano, Giuseppe ;
Braun, Ralph P. ;
Cabo, Horacio ;
Gutman, David ;
Halpern, Allan ;
Helba, Brian ;
Hofmann-Wellenhof, Rainer ;
Lallas, Aimilios ;
Lapins, Jan ;
Longo, Caterina ;
Malvehy, Josep ;
Marchetti, Michael A. ;
Marghoob, Ashfaq ;
Menzies, Scott ;
Oakley, Amanda ;
Paoli, John ;
Puig, Susana ;
Rinner, Christoph ;
Rosendahl, Cliff ;
Scope, Alon ;
Sinz, Christoph ;
Soyer, H. Peter ;
Thomas, Luc ;
Zalaudek, Iris ;
Kittler, Harald .
LANCET ONCOLOGY, 2019, 20 (07) :938-947