Determination of a Multidimensional Kernel in Some Parabolic Integro-differential Equation

被引:12
|
作者
Durdiev, Durdimurod K. [1 ]
Nuriddinov, Zhavlon Z. [2 ]
机构
[1] Acad Sci Uzbek, Bukhara Branch, Inst Math, Bukhara, Uzbekistan
[2] Bukhara State Univ, Bukhara, Uzbekistan
来源
JOURNAL OF SIBERIAN FEDERAL UNIVERSITY-MATHEMATICS & PHYSICS | 2021年 / 14卷 / 01期
关键词
integro-differential equation; inverse problem; Holder space; kernel; resolvent; INVERSE PROBLEM; HEAT-EQUATION;
D O I
10.17516/1997-1397-2021-14-1-117-127
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A multidimensional parabolic integro-differential equation with the time-convolution integral on the right side is considered. The direct problem is represented by the Cauchy problem for this equation. The inverse problem is studied in this paper. The problem consists in finding the time and spatial dependent kernel of the equation from the solution of direct problem in a hyperplane x(n) = 0 for t > 0. This problem is reduced to the more convenient inverse problem with the use of the resolvent kernel. The last problem is replaced by the equivalent system of integral equations with respect to unknown functions. The unique solvability of the direct and inverse problems is proved with use of the principle of contraction mapping.
引用
收藏
页码:117 / 127
页数:11
相关论文
共 50 条
  • [1] ON DETERMINATION OF THE COEFFICIENT AND KERNEL IN AN INTEGRO-DIFFERENTIAL EQUATION OF PARABOLIC TYPE
    Durdiev, D. K.
    Zhumaev, Zh. Zh
    EURASIAN JOURNAL OF MATHEMATICAL AND COMPUTER APPLICATIONS, 2023, 11 (01): : 49 - 65
  • [2] ON THE UNIQUENESS OF KERNEL DETERMINATION IN THE INTEGRO-DIFFERENTIAL EQUATION OF PARABOLIC TYPE
    Durdiev, D. K.
    VESTNIK SAMARSKOGO GOSUDARSTVENNOGO TEKHNICHESKOGO UNIVERSITETA-SERIYA-FIZIKO-MATEMATICHESKIYE NAUKI, 2015, 19 (04): : 658 - 666
  • [3] KERNEL DETERMINATION PROBLEM IN AN INTEGRO-DIFFERENTIAL EQUATION OF PARABOLIC TYPE WITH NONLOCAL CONDITION
    Durdiev, D. Q.
    Jumaev, J. J.
    Atoev, D. D.
    VESTNIK UDMURTSKOGO UNIVERSITETA-MATEMATIKA MEKHANIKA KOMPYUTERNYE NAUKI, 2023, 33 (01): : 90 - 102
  • [4] Uniqueness of the Kernel Determination Problem in a Integro-Differential Parabolic Equation with Variable Coefficients
    Durdiev, D. K.
    Nuriddinov, J. Z.
    RUSSIAN MATHEMATICS, 2023, 67 (11) : 1 - 11
  • [5] Inverse problem of determining the kernel in an integro-differential equation of parabolic type
    Durdiev, D. K.
    Rashidov, A. Sh.
    DIFFERENTIAL EQUATIONS, 2014, 50 (01) : 110 - 116
  • [6] Inverse problem of determining the kernel in an integro-differential equation of parabolic type
    D. K. Durdiev
    A. Sh. Rashidov
    Differential Equations, 2014, 50 : 110 - 116
  • [7] Existence and Uniqueness of an Inverse Memory Kernel for an Integro-Differential Parabolic Equation with Free Boundary
    Wu, Bin
    Gao, Ying
    Yan, Lin
    Wu, Siyuan
    Wang, Zewen
    JOURNAL OF DYNAMICAL AND CONTROL SYSTEMS, 2018, 24 (02) : 237 - 252
  • [8] Existence and Uniqueness of an Inverse Memory Kernel for an Integro-Differential Parabolic Equation with Free Boundary
    Bin Wu
    Ying Gao
    Lin Yan
    Siyuan Wu
    Zewen Wang
    Journal of Dynamical and Control Systems, 2018, 24 : 237 - 252
  • [9] DETERMINATION OF A KERNEL IN A NONLOCAL PROBLEM FOR THE TIME-FRACTIONAL INTEGRO-DIFFERENTIAL EQUATION
    Rahmonov, A. A.
    EURASIAN JOURNAL OF MATHEMATICAL AND COMPUTER APPLICATIONS, 2024, 12 (02): : 107 - 133
  • [10] ON INVESTIGATION OF THE INVERSE PROBLEM FOR A PARABOLIC INTEGRO-DIFFERENTIAL EQUATION WITH A VARIABLE COEFFICIENT OF THERMAL CONDUCTIVITY
    Durdiev, D. K.
    Nuriddinov, J. Z.
    VESTNIK UDMURTSKOGO UNIVERSITETA-MATEMATIKA MEKHANIKA KOMPYUTERNYE NAUKI, 2020, 30 (04): : 572 - 584