Quadratic Chabauty for modular curves and modular forms of rank one

被引:6
|
作者
Dogra, Netan [1 ]
Le Fourn, Samuel [2 ]
机构
[1] Kings Coll London, Dept Math, London WC2R 2LS, England
[2] Univ Grenoble Alpes, CNRS, F-38000 St Martin Dheres, IF, France
关键词
AUTOMORPHIC L-FUNCTIONS; ABELIAN-VARIETIES; RATIONAL-POINTS; TRIPLE PRODUCT; GROSS-ZAGIER; DERIVATIVES; THEOREM; VALUES; CYCLE;
D O I
10.1007/s00208-020-02112-3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we provide refined sufficient conditions for the quadratic Chabauty method on a curve X to produce an effective finite set of points containing the rational points X(Q), with the condition on the rank of the Jacobian of X replaced by condition on the rank of a quotient of the Jacobian plus an associated space of Chow-Heegner points. We then apply this condition to prove the effective finiteness of X( Q) for any modular curve X = X-0(+) ( N) or X-ns(+)(N) of genus at least 2 with N prime. The proof relies on the existence of a quotient of their Jacobians whose Mordell-Weil rank is equal to its dimension (and at least 2), which is proven via analytic estimates for orders of vanishing of L-functions of modular forms, thanks to a Kolyvagin-Logachev type result.
引用
收藏
页码:393 / 448
页数:56
相关论文
共 50 条
  • [21] The vanishing of anticyclotomic μ-invariants for non modular forms
    Hatly, Jeffrey
    Lei, Antonio
    COMPTES RENDUS MATHEMATIQUE, 2023, 361 (01) : 65 - 72
  • [22] Meromorphic Modular Forms with Rational Cycle Integrals
    Lobrich, Steffen
    Schwagenscheidt, Markus
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2022, 2022 (01) : 312 - 342
  • [23] On equivariant topological modular forms
    Gepner, David
    Meier, Lennart
    COMPOSITIO MATHEMATICA, 2023, 159 (12) : 2638 - 2693
  • [24] ON FOURIER COEFFICIENTS OF MODULAR FORMS
    Cummins, C. J.
    Haghighi, N. S.
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2011, 83 (01) : 50 - 62
  • [25] Parity of the coefficients of modular forms
    Bellaiche, Joel
    Nicolas, Jean-Louis
    RAMANUJAN JOURNAL, 2016, 40 (01) : 1 - 44
  • [26] Rational decomposition of modular forms
    Popa, Alexandru A.
    RAMANUJAN JOURNAL, 2011, 26 (03) : 419 - 435
  • [27] Perfectoid Drinfeld Modular Forms
    Nicole, Marc-Hubert
    Rosso, Giovanni
    JOURNAL DE THEORIE DES NOMBRES DE BORDEAUX, 2021, 33 (03): : 1045 - 1067
  • [28] Explicit Chabauty-Kim for the split Cartan modular curve of level 13
    Balakrishnan, Jennifer S.
    Dogra, Netan
    Muller, J. Steffen
    Tuitman, Jan
    Vonk, Jan
    ANNALS OF MATHEMATICS, 2019, 189 (03) : 885 - 944
  • [29] ELLIPTIC CURVES OF ODD MODULAR DEGREE
    Calegari, Frank
    Emerton, Matthew
    ISRAEL JOURNAL OF MATHEMATICS, 2009, 169 (01) : 417 - 444
  • [30] Runge's Method and Modular Curves
    Bilu, Yuri
    Parent, Pierre
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2011, 2011 (09) : 1997 - 2027