Quadratic Chabauty for modular curves and modular forms of rank one

被引:6
|
作者
Dogra, Netan [1 ]
Le Fourn, Samuel [2 ]
机构
[1] Kings Coll London, Dept Math, London WC2R 2LS, England
[2] Univ Grenoble Alpes, CNRS, F-38000 St Martin Dheres, IF, France
关键词
AUTOMORPHIC L-FUNCTIONS; ABELIAN-VARIETIES; RATIONAL-POINTS; TRIPLE PRODUCT; GROSS-ZAGIER; DERIVATIVES; THEOREM; VALUES; CYCLE;
D O I
10.1007/s00208-020-02112-3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we provide refined sufficient conditions for the quadratic Chabauty method on a curve X to produce an effective finite set of points containing the rational points X(Q), with the condition on the rank of the Jacobian of X replaced by condition on the rank of a quotient of the Jacobian plus an associated space of Chow-Heegner points. We then apply this condition to prove the effective finiteness of X( Q) for any modular curve X = X-0(+) ( N) or X-ns(+)(N) of genus at least 2 with N prime. The proof relies on the existence of a quotient of their Jacobians whose Mordell-Weil rank is equal to its dimension (and at least 2), which is proven via analytic estimates for orders of vanishing of L-functions of modular forms, thanks to a Kolyvagin-Logachev type result.
引用
收藏
页码:393 / 448
页数:56
相关论文
共 50 条
  • [1] Quadratic Chabauty for modular curves: algorithms and examples
    Balakrishnan, Jennifer S.
    Dogra, Netan
    Mueller, J. Steffen
    Tuitman, Jan
    Vonk, Jan
    COMPOSITIO MATHEMATICA, 2023, 159 (06) : 1111 - 1152
  • [2] Quadratic Chabauty for Atkin-Lehner quotients of modular curves of prime level and genus 4, 5, 6
    Adzaga, Nikola
    Arul, Vishal
    Beneish, Lea
    Chen, Mingjie
    Chidambaram, Shiva
    Keller, Timo
    Wen, Boya
    ACTA ARITHMETICA, 2023, 208 (01) : 15 - 49
  • [3] Elliptic curves over real quadratic fields are modular
    Freitas, Nuno
    Le Hung, Bao V.
    Siksek, Samir
    INVENTIONES MATHEMATICAE, 2015, 201 (01) : 159 - 206
  • [4] COMPUTING QUADRATIC POINTS ON MODULAR CURVES XO(N)
    Adzaga, Nikola
    Keller, Timo
    Michaud-Jacobs, Philippe
    Najman, Filip
    Ozman, Ekin
    Vukorepa, Borna
    MATHEMATICS OF COMPUTATION, 2024, 93 (347) : 1371 - 1397
  • [5] Linear and Quadratic Chabauty for Affine Hyperbolic Curves
    Leonhardt, Marius
    Luedtke, Martin
    Mueller, J. Steffen
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2023, 2023 (21) : 18752 - 18780
  • [6] Steinberg homology, modular forms, and real quadratic fields
    Ash, Avner
    Yasaki, Dan
    JOURNAL OF NUMBER THEORY, 2021, 224 : 323 - 367
  • [7] MOCK MODULAR FORMS AND QUANTUM MODULAR FORMS
    Choi, Dohoon
    Lim, Subong
    Rhoades, Robert C.
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2016, 144 (06) : 2337 - 2349
  • [8] Torsion of rank 2 Drinfeld modules and Drinfeld modular forms
    Armana, Cecile
    ALGEBRA & NUMBER THEORY, 2012, 6 (06) : 1239 - 1288
  • [9] COMPUTING INTEGRAL POINTS ON HYPERELLIPTIC CURVES USING QUADRATIC CHABAUTY
    Balakrishnan, Jennifer S.
    Besser, Amnon
    Mueller, J. Steffen
    MATHEMATICS OF COMPUTATION, 2017, 86 (305) : 1403 - 1434
  • [10] QUADRATIC POINTS ON MODULAR CURVES WITH INFINITE MORDELL-WEIL GROUP
    Box, Josha
    MATHEMATICS OF COMPUTATION, 2021, 90 (327) : 321 - 343