Multi-parametric MR imaging of the anterior fibromuscular stroma and its differentiation from prostate cancer

被引:17
作者
Ward, Emily [1 ,2 ]
Baad, Michael [1 ]
Peng, Yahui [1 ,3 ]
Yousuf, Ambereen [1 ]
Wang, Shiyang [1 ]
Antic, Tatjana [4 ]
Oto, Aytekin [1 ]
机构
[1] Univ Chicago, Dept Radiol, 5841 S Maryland Ave MC 2026, Chicago, IL 60637 USA
[2] Adelaide & Meath Hosp, Dept Radiol, Dublin 24, Ireland
[3] Beijing Jiaotong Univ, Sch Elect & Informat Engn, 3 Shangyuancun, Beijing 100044, Peoples R China
[4] Univ Chicago, Dept Pathol, 5841 S Maryland Ave MC 6101, Chicago, IL 60637 USA
关键词
Anterior prostate; Prostate cancer; Anterior fibromuscular stroma; Prostate MRI; MULTIPARAMETRIC MRI; BIOPSY; ZONE; TUMORS; DIAGNOSIS; FEATURES; OUTCOMES; ANATOMY;
D O I
10.1007/s00261-016-0951-0
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Purpose: To describe MP-MRI features of the normal anterior fibromuscular stroma (AFMS) and identify MR imaging findings that can differentiate it from anterior prostate cancer. Methods: We reviewed MP-MR images and histopathology of patients who underwent pre-operative MRI and prostatectomy between October 2012 and August 2014. Thirty-seven patients with anterior prostate cancer larger than 5 mm and 40 patients with no anterior cancer were included in this study. After correlation with histology and MR images, the size, symmetry, T2, DWI characteristics, and enhancement pattern of normal AFMS and anterior prostate cancer were compared. Results: Normal AFMS was hypointense and symmetric on T2-weighted images (37/40, 93%), whereas anterior prostate cancers, while also hypointense on T2-weighted images, were predominantly asymmetric (6/37, 16%) (P < 0.001). On high b-value DWI, AFMS was predominantly hypointense (36/40, 90%), whereas anterior prostate cancers were predominantly hyperintense (30/37, 81%) compared to the normal peripheral zone (P < 0.001). The mean ADC and tenth percentile ADC values of anterior prostate cancers were lower than normal AFMS (7.14 vs. 8.33 (10(-4) mm(2)/s), P < 0.01) and (5.73 vs. 6.95 (10(-4) mm(2)/s), P < 0.01), respectively. On DCE-MR images, AFMS demonstrated a type 1 enhancement curve (35/39, 90%), whereas anterior prostate cancers demonstrated only either a type 3 (23/37, 62%) or type 2 enhancement curve (14/37, 38%) (P < 0.001). Conclusion: Symmetric T2 appearance, hypointense high b-value DWI signal, relatively higher ADC values, and Type 1 enhancement pattern of the AFMS can be helpful in its differentiation from anterior prostate cancers.
引用
收藏
页码:926 / 934
页数:9
相关论文
共 50 条
[41]   Logistic regression model for diagnosis of transition zone prostate cancer on multi-parametric MRI [J].
Dikaios, Nikolaos ;
Alkalbani, Jokha ;
Sidhu, Harbir Singh ;
Fujiwara, Taiki ;
Abd-Alazeez, Mohamed ;
Kirkham, Alex ;
Allen, Clare ;
Ahmed, Hashim ;
Emberton, Mark ;
Freeman, Alex ;
Halligan, Steve ;
Taylor, Stuart ;
Atkinson, David ;
Punwani, Shonit .
EUROPEAN RADIOLOGY, 2015, 25 (02) :523-532
[42]   Incorporating Oxygen-Enhanced MRI into Multi-Parametric Assessment of Human Prostate Cancer [J].
Zhou, Heling ;
Hallac, Rami R. ;
Yuan, Qing ;
Ding, Yao ;
Zhang, Zhongwei ;
Xie, Xian-Jin ;
Francis, Franto ;
Roehrborn, Claus G. ;
Sims, R. Douglas ;
Costa, Daniel N. ;
Raj, Ganesh V. ;
Mason, Ralph P. .
DIAGNOSTICS, 2017, 7 (03)
[43]   AUTOMATIC PROSTATE CANCER DETECTION ON MULTI-PARAMETRIC MRI WITH HIERARCHICAL WEAKLY SUPERVISED LEARNING [J].
Yang, Haibo ;
Wu, GuangYu ;
Shen, Dinggang ;
Liao, Shu .
2021 IEEE 18TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI), 2021, :316-319
[44]   Transperineal versus transrectal multi-parametric magnetic resonance imaging fusion targeted prostate biopsy [J].
Rabah, Danny ;
Al-Taweel, Waleed ;
Khan, Farrukh ;
Arafa, Mostafa ;
Mehmood, Shahbaz ;
Mokhtar, Alaa ;
Farhat, Karim .
SAUDI MEDICAL JOURNAL, 2021, 42 (06) :649-654
[45]   Comparison of intensity normalization methods in prostate, brain, and breast cancer multi-parametric magnetic resonance imaging [J].
Duenweg, Savannah R. ;
Bobholz, Samuel A. ;
Lowman, Allison K. ;
Winiarz, Aleksandra ;
Nath, Biprojit ;
Barrett, Michael J. ;
Kyereme, Fitzgerald ;
Vincent-Sheldon, Stephanie ;
Laviolette, Peter .
FRONTIERS IN ONCOLOGY, 2025, 15
[46]   Personalized precision radiotherapy by integration of multi-parametric functional and biological imaging in prostate cancer: A feasibility study [J].
Thorwarth, Daniela ;
Notohamiprodjo, Mike ;
Zips, Daniel ;
Mueller, Arndt-Christan .
ZEITSCHRIFT FUR MEDIZINISCHE PHYSIK, 2017, 27 (01) :21-30
[47]   Performance of multi-parametric magnetic resonance imaging through PIRADS scoring system in biopsy naive patients with suspicious prostate cancer [J].
Nowier, Amr ;
Mazhar, Hesham ;
Salah, Rasha ;
Shabayek, Mohamed .
ARAB JOURNAL OF UROLOGY, 2022, 20 (03) :121-125
[48]   The Prostate Health Index and multi-parametric MRI improve diagnostic accuracy of detecting prostate cancer in Asian populations [J].
Ye, Changhee ;
Ho, Jin-Nyoung ;
Kim, Dan Hyo ;
Song, Sang Hun ;
Kim, Hwanik ;
Lee, Hakmin ;
Jeong, Seong Jin ;
Hong, Sung Kyu ;
Byun, Seok-Soo ;
Ahn, Hyungwoo ;
Hwang, Sung, II ;
Lee, Hak Jong ;
Lee, Sangchul .
INVESTIGATIVE AND CLINICAL UROLOGY, 2022, 63 (06) :631-638
[49]   Distinguishing prostate cancer from benign confounders via a cascaded classifier on multi-parametric MRI [J].
Litjens, G. J. S. ;
Elliott, R. ;
Shih, N. ;
Feldman, M. ;
Barentsz, J. O. ;
Hulsbergen-van de Kaa, C. A. ;
Kovacs, I. ;
Huisman, H. J. ;
Madabhushi, A. .
MEDICAL IMAGING 2014: COMPUTER-AIDED DIAGNOSIS, 2014, 9035
[50]   COMPUTER AIDED DIAGNOSIS OF CLINICALLY SIGNIFICANT PROSTATE CANCER IN LOW-RISK PATIENTS ON MULTI-PARAMETRIC MR IMAGES USING DEEP LEARNING [J].
Arif, Muhammad ;
Schoots, Ivo G. ;
Castillo, Jose M. T. ;
Roobol, Monique J. ;
Niessen, Wiro ;
Veenland, Jifke F. .
2020 IEEE 17TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI 2020), 2020, :1482-1485