Multi-parametric MR imaging of the anterior fibromuscular stroma and its differentiation from prostate cancer

被引:17
作者
Ward, Emily [1 ,2 ]
Baad, Michael [1 ]
Peng, Yahui [1 ,3 ]
Yousuf, Ambereen [1 ]
Wang, Shiyang [1 ]
Antic, Tatjana [4 ]
Oto, Aytekin [1 ]
机构
[1] Univ Chicago, Dept Radiol, 5841 S Maryland Ave MC 2026, Chicago, IL 60637 USA
[2] Adelaide & Meath Hosp, Dept Radiol, Dublin 24, Ireland
[3] Beijing Jiaotong Univ, Sch Elect & Informat Engn, 3 Shangyuancun, Beijing 100044, Peoples R China
[4] Univ Chicago, Dept Pathol, 5841 S Maryland Ave MC 6101, Chicago, IL 60637 USA
关键词
Anterior prostate; Prostate cancer; Anterior fibromuscular stroma; Prostate MRI; MULTIPARAMETRIC MRI; BIOPSY; ZONE; TUMORS; DIAGNOSIS; FEATURES; OUTCOMES; ANATOMY;
D O I
10.1007/s00261-016-0951-0
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Purpose: To describe MP-MRI features of the normal anterior fibromuscular stroma (AFMS) and identify MR imaging findings that can differentiate it from anterior prostate cancer. Methods: We reviewed MP-MR images and histopathology of patients who underwent pre-operative MRI and prostatectomy between October 2012 and August 2014. Thirty-seven patients with anterior prostate cancer larger than 5 mm and 40 patients with no anterior cancer were included in this study. After correlation with histology and MR images, the size, symmetry, T2, DWI characteristics, and enhancement pattern of normal AFMS and anterior prostate cancer were compared. Results: Normal AFMS was hypointense and symmetric on T2-weighted images (37/40, 93%), whereas anterior prostate cancers, while also hypointense on T2-weighted images, were predominantly asymmetric (6/37, 16%) (P < 0.001). On high b-value DWI, AFMS was predominantly hypointense (36/40, 90%), whereas anterior prostate cancers were predominantly hyperintense (30/37, 81%) compared to the normal peripheral zone (P < 0.001). The mean ADC and tenth percentile ADC values of anterior prostate cancers were lower than normal AFMS (7.14 vs. 8.33 (10(-4) mm(2)/s), P < 0.01) and (5.73 vs. 6.95 (10(-4) mm(2)/s), P < 0.01), respectively. On DCE-MR images, AFMS demonstrated a type 1 enhancement curve (35/39, 90%), whereas anterior prostate cancers demonstrated only either a type 3 (23/37, 62%) or type 2 enhancement curve (14/37, 38%) (P < 0.001). Conclusion: Symmetric T2 appearance, hypointense high b-value DWI signal, relatively higher ADC values, and Type 1 enhancement pattern of the AFMS can be helpful in its differentiation from anterior prostate cancers.
引用
收藏
页码:926 / 934
页数:9
相关论文
共 50 条
  • [21] Semi-automatic classification of prostate cancer on multi-parametric MR imaging using a multi-channel 3D convolutional neural network
    Nader Aldoj
    Steffen Lukas
    Marc Dewey
    Tobias Penzkofer
    European Radiology, 2020, 30 : 1243 - 1253
  • [22] Review of the accuracy of multi-parametric MRI prostate in detecting prostate cancer within a local reporting service
    Tsai, Wei Che
    Field, Lee
    Stewart, Sophie
    Schultz, Martin
    JOURNAL OF MEDICAL IMAGING AND RADIATION ONCOLOGY, 2020, 64 (03) : 379 - 384
  • [23] Prostate cancer on computed tomography: A direct comparison with multi-parametric magnetic resonance imaging and tissue pathology
    Jia, Jemianne Bautista
    Houshyar, Roozbeh
    Verma, Sadhna
    Uchio, Edward
    Lall, Chandana
    EUROPEAN JOURNAL OF RADIOLOGY, 2016, 85 (01) : 261 - 267
  • [24] Role of multi-parametric (mp) MRI in prostate cancer
    Nazim, Syed Muhammad
    Ather, Muhammad Hammad
    Salam, Basit
    JOURNAL OF THE PAKISTAN MEDICAL ASSOCIATION, 2018, 68 (01) : 98 - 104
  • [25] Deep transfer learning-based prostate cancer classification using 3 Tesla multi-parametric MRI
    Zhong, Xinran
    Cao, Ruiming
    Shakeri, Sepideh
    Scalzo, Fabien
    Lee, Yeejin
    Enzmann, Dieter R.
    Wu, Holden H.
    Raman, Steven S.
    Sung, Kyunghyun
    ABDOMINAL RADIOLOGY, 2019, 44 (06) : 2030 - 2039
  • [26] A boosting approach for prostate cancer detection using multi-parametric MRI
    Lemaitre, Guillaume
    Massich, Joan
    Marti, Robert
    Freixenet, Jordi
    Vilanova, Joan C.
    Walker, Paul M.
    Sidibe, Desire D.
    Meriaudeau, Fabrice
    TWELFTH INTERNATIONAL CONFERENCE ON QUALITY CONTROL BY ARTIFICIAL VISION, 2015, 9534
  • [27] Monitoring radiotherapy induced tissue changes in localized prostate cancer by multi-parametric magnetic resonance imaging (MP-MRI)
    Wu, X.
    Reinikainen, P.
    Kapanen, M.
    Vierikko, T.
    Ryymin, P.
    Kellokumpu-Lehtinen, P-L
    DIAGNOSTIC AND INTERVENTIONAL IMAGING, 2019, 100 (11) : 699 - 708
  • [28] Evaluating Texture-Based Prostate Cancer Classification on Multi-Parametric Magnetic Resonance Imaging and Prostate Specific Membrane Antigen Positron Emission Tomography
    Alfano, R.
    Bauman, G. S.
    Thiessen, J.
    Rachinsky, I.
    Pavlovsky, W.
    Butler, J.
    Gaed, M.
    Moussa, M.
    Gomez, J. A.
    Chin, J. L.
    Pautler, S.
    Ward, A. D.
    MEDICAL IMAGING 2020: COMPUTER-AIDED DIAGNOSIS, 2020, 11314
  • [29] Fusion of Multi-parametric MRI and Temporal Ultrasound for Characterization of Prostate Cancer: in vivo Feasibility Study
    Imani, Farhad
    Ghavidel, Sahar
    Abolmaesumi, Purang
    Khallaghi, Siavash
    Gibson, Eli
    Khojaste, Amir
    Gaed, Mena
    Moussa, Madeleine
    Gomez, Jose A.
    Romagnoli, Cesare
    Cool, Derek W.
    Bastian-Jordan, Matthew
    Kassam, Zahra
    Siemens, D. Robert
    Leveridge, Michael
    Chang, Silvia
    Fenster, Aaron
    Ward, Aaron D.
    Mousavi, Parvin
    MEDICAL IMAGING 2016: COMPUTER-AIDED DIAGNOSIS, 2015, 9785
  • [30] Observed racial disparity in the negative predictive value of multi-parametric MRI for the diagnosis for prostate cancer
    Mahran, Amr
    Mishra, Kirtishri
    Bukavina, Laura
    Schumacher, Fredrick
    Quian, Anna
    Buzzy, Christina
    Nguyen, Carvell T.
    Gulani, Vikas
    Ponsky, Lee E.
    INTERNATIONAL UROLOGY AND NEPHROLOGY, 2019, 51 (08) : 1343 - 1348