Iterative Interaction Training for Segmentation Editing Networks

被引:22
作者
Bredell, Gustav [1 ]
Tanner, Christine [1 ]
Konukoglu, Ender [1 ]
机构
[1] Swiss Fed Inst Technol, Comp Vis Lab, Zurich, Switzerland
来源
MACHINE LEARNING IN MEDICAL IMAGING: 9TH INTERNATIONAL WORKSHOP, MLMI 2018 | 2018年 / 11046卷
关键词
D O I
10.1007/978-3-030-00919-9_42
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Automatic segmentation has great potential to facilitate morphological measurements while simultaneously increasing efficiency. Nevertheless often users want to edit the segmentation to their own needs and will need different tools for this. There has been methods developed to edit segmentations of automatic methods based on the user input, primarily for binary segmentations. Here however, we present an unique training strategy for convolutional neural networks (CNNs) trained on top of an automatic method to enable interactive segmentation editing that is not limited to binary segmentation. By utilizing a robot-user during training, we closely mimic realistic use cases to achieve optimal editing performance. In addition, we show that an increase of the iterative interactions during the training process up to ten improves the segmentation editing performance substantially. Furthermore, we compare our segmentation editing CNN (interCNN) to state-of-the-art interactive segmentation algorithms and show a superior or on par performance.
引用
收藏
页码:363 / 370
页数:8
相关论文
共 21 条
[1]  
Amrehn M., 2017, EUR WORKSH VIS COMP, P143, DOI [10.2312/vcbm.20171248, DOI 10.2312/VCBM.20171248]
[2]  
[Anonymous], 2015, NCI-ISBI 2013 Challenge: Automated Segmentation of Prostate Structures
[3]  
[Anonymous], 2015, P INT C MACHINE LEAR
[4]  
Criminisi A, 2008, LECT NOTES COMPUT SC, V5302, P99, DOI 10.1007/978-3-540-88682-2_9
[5]  
Grady L, 2005, LECT NOTES COMPUT SC, V3750, P773, DOI 10.1007/11566489_95
[6]   A survey on deep learning in medical image analysis [J].
Litjens, Geert ;
Kooi, Thijs ;
Bejnordi, Babak Ehteshami ;
Setio, Arnaud Arindra Adiyoso ;
Ciompi, Francesco ;
Ghafoorian, Mohsen ;
van der Laak, Jeroen A. W. M. ;
van Ginneken, Bram ;
Sanchez, Clara I. .
MEDICAL IMAGE ANALYSIS, 2017, 42 :60-88
[7]   Evaluation of prostate segmentation algorithms for MRI: The PROMISE12 challenge [J].
Litjens, Geert ;
Toth, Robert ;
van de Ven, Wendy ;
Hoeks, Caroline ;
Kerkstra, Sjoerd ;
van Ginneken, Bram ;
Vincent, Graham ;
Guillard, Gwenael ;
Birbeck, Neil ;
Zhang, Jindang ;
Strand, Robin ;
Malmberg, Filip ;
Ou, Yangming ;
Davatzikos, Christos ;
Kirschner, Matthias ;
Jung, Florian ;
Yuan, Jing ;
Qiu, Wu ;
Gao, Qinquan ;
Edwards, Philip Eddie ;
Maan, Bianca ;
van der Heijden, Ferdinand ;
Ghose, Soumya ;
Mitra, Jhimli ;
Dowling, Jason ;
Barratt, Dean ;
Huisman, Henkjan ;
Madabhushi, Anant .
MEDICAL IMAGE ANALYSIS, 2014, 18 (02) :359-373
[8]  
Mahadevan S., 2018, ARXIV180504398
[9]  
Nickisch Hannes., 2010, Proc. of the Indian Conf. on Computer Vision, P274
[10]   Automatic segmentation of pelvic structures from magnetic resonance images for prostate cancer radiotherapy [J].
Pasquier, David ;
Lacornerie, Thomas ;
Vermandel, Maximilien ;
Rousseau, Jean ;
Lartigau, Eric ;
Betrouni, Nacim .
INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 2007, 68 (02) :592-600