A generalization of Nadler fixed point theorem

被引:0
作者
Vetro, Francesca [1 ]
机构
[1] Univ Palermo, Dipartimento Energia Ingn Informaz & Modelli Mate, I-90128 Palermo, Italy
关键词
Metric space; fixed point; multivalued mapping; PARTIALLY ORDERED SETS; ORDINARY DIFFERENTIAL-EQUATIONS; CONTRACTION-MAPPINGS; METRIC-SPACES;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Deli and Samet gave a new generalization of the Banach contraction principle in the setting of Branciari metric spaces [Jleli, M. and Samet, B., A new generalization of the Banach contraction principle, J. Inequal. Appl., 2014:38 (2014)]. The purpose of this paper is to study the existence of fixed points for multivalued mappings, under a similar contractive condition, in the setting of complete metric spaces. Some examples are provided to illustrate the new theory.
引用
收藏
页码:403 / 410
页数:8
相关论文
共 21 条
[1]   A Suzuki type fixed point theorem for a generalized multivalued mapping on partial Hausdorff metric spaces [J].
Abbas, Mujahid ;
Ali, Basit ;
Vetro, Calogero .
TOPOLOGY AND ITS APPLICATIONS, 2013, 160 (03) :553-563
[2]   Fixed Points of Multivalued Nonself Almost Contractions [J].
Alghamdi, Maryam A. ;
Berinde, Vasile ;
Shahzad, Naseer .
JOURNAL OF APPLIED MATHEMATICS, 2013,
[3]   Fixed point theory for set-valued quasi-contraction maps in metric spaces [J].
Amini-Harandi, A. .
APPLIED MATHEMATICS LETTERS, 2011, 24 (11) :1791-1794
[4]   Partial Hausdorff metric and Nadler's fixed point theorem on partial metric spaces [J].
Aydi, Hassen ;
Abbas, Mujahid ;
Vetro, Calogero .
TOPOLOGY AND ITS APPLICATIONS, 2012, 159 (14) :3234-3242
[5]   On a general class of multi-valued weakly Picard mappings [J].
Berinde, Madalina ;
Berinde, Vasile .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2007, 326 (02) :772-782
[6]  
Berinde V., 2013, Creat. Math. Inform., V22, P35
[7]  
Chifu C., 2007, FIXED POINT THEORY A
[8]   Multi-valued nonlinear contraction mappings [J].
Ciric, Ljubomir .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2009, 71 (7-8) :2716-2723
[9]   FIXED-POINTS OF GENERALIZED CONTRACTIVE MULTIVALUED MAPPINGS [J].
DAFFER, PZ ;
KANEKO, H .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1995, 192 (02) :655-666
[10]   A new generalization of the Banach contraction principle [J].
Jleli, Mohamed ;
Samet, Bessem .
JOURNAL OF INEQUALITIES AND APPLICATIONS, 2014,