Multifrequency and edge breathers in the discrete sine-Gordon system via subharmonic driving: Theory, computation and experiment

被引:12
作者
Palmero, F. [1 ,2 ]
Han, J. [2 ]
English, L. Q. [2 ]
Alexander, T. J. [3 ]
Kevrekidis, P. G. [4 ,5 ,6 ]
机构
[1] Univ Seville, Dept Fis Aplicada 1, ETSI Informat, Grp Fis No Lineal, E-41012 Seville, Spain
[2] Dickinson Coll, Dept Phys & Astron, Carlisle, PA 17013 USA
[3] UNSW Canberra, Sch Phys Environm & Math Sci, Canberra, ACT 2610, Australia
[4] Univ Massachusetts, Dept Math & Stat, Amherst, MA 01003 USA
[5] Los Alamos Natl Lab, Ctr Nonlinear Studies, Los Alamos, NM 87544 USA
[6] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87544 USA
关键词
Intrinsic localized modes; Discrete breathers; Edge breathers; NONLINEAR LATTICES; DYNAMICS; MODES; STABILITY; ARRAYS;
D O I
10.1016/j.physleta.2015.10.061
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We consider a chain of torsionally-coupled, planar pendula shaken horizontally by an external sinusoidal driver. It has been known that in such a system, theoretically modeled by the discrete sine-Gordon equation, intrinsic localized modes, also known as discrete breathers, can exist. Recently, the existence of multifrequency breathers via subharmonic driving has been theoretically proposed and numerically illustrated by Xu et al. (2014) [21]. In this paper, we verify this prediction experimentally. Comparison of the experimental results to numerical simulations with realistic system parameters (including a Floquet stability analysis), and wherever possible to analytical results (e.g. for the subharmonic response of the single driven-damped pendulum), yields good agreement. Finally, we report the period-1 and multifrequency edge breathers which are localized at the open boundaries of the chain, for which we have again found good agreement between experiments and numerical computations. (C) 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:402 / 407
页数:6
相关论文
共 37 条
[1]   Nonlocal surface-wave solitons [J].
Alfassi, Barak ;
Rotschild, Carmel ;
Manela, Ofer ;
Segev, Mordechai ;
Christodoulides, Demetrios N. .
PHYSICAL REVIEW LETTERS, 2007, 98 (21)
[2]  
[Anonymous], 2014, SINE GORDON MODEL IT
[3]   Breathers in nonlinear lattices: Existence, linear stability and quantization [J].
Aubry, S .
PHYSICA D-NONLINEAR PHENOMENA, 1997, 103 (1-4) :201-250
[4]   Observation of breathers in Josephson ladders [J].
Binder, P ;
Abraimov, D ;
Ustinov, AV ;
Flach, S ;
Zolotaryuk, Y .
PHYSICAL REVIEW LETTERS, 2000, 84 (04) :745-748
[5]   Discrete Breathers in One-Dimensional Diatomic Granular Crystals [J].
Boechler, N. ;
Theocharis, G. ;
Job, S. ;
Kevrekidis, P. G. ;
Porter, Mason A. ;
Daraio, C. .
PHYSICAL REVIEW LETTERS, 2010, 104 (24)
[6]   Nonlinear dynamics of the Frenkel-Kontorova model [J].
Braun, OM ;
Kivshar, YS .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1998, 306 (1-2) :1-108
[7]  
Chester W., 1975, IMA J APPL MATH, V15, P289
[8]   Discrete Breathers in a Forced-Damped Array of Coupled Pendula: Modeling, Computation, and Experiment [J].
Cuevas, J. ;
English, L. Q. ;
Kevrekidis, P. G. ;
Anderson, M. .
PHYSICAL REVIEW LETTERS, 2009, 102 (22)
[9]  
Davidson S. G., 1996, BASIC THEORY SURFACE
[10]   Bright Bose-Einstein gap solitons of atoms with repulsive interaction [J].
Eiermann, B ;
Anker, T ;
Albiez, M ;
Taglieber, M ;
Treutlein, P ;
Marzlin, KP ;
Oberthaler, MK .
PHYSICAL REVIEW LETTERS, 2004, 92 (23) :230401-1