Emotional Brain-Inspired Adaptive Fuzzy Decayed Learning for Online Prediction Problems

被引:8
作者
Lotfi, Ehsan [1 ]
Akbarzadeh-T, M. R. [2 ]
机构
[1] Islamic Azad Univ, Torbat E Jam Branch, Dept Comp Engn, Torbat E Jam, Iran
[2] Ferdowsi Univ Mashhad, Dept Elect & Comp Engn, Mashhad, Iran
来源
2013 IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS (FUZZ - IEEE 2013) | 2013年
关键词
BELBIC; BEL; ADBEL; Limbic; Amygdala; Fuzzy emotion; Forecast; Computational model; SPEED CONTROL; CONTROLLERS; CHAOS; MODEL;
D O I
10.1109/FUZZ-IEEE.2013.6622510
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, we propose a Fuzzy Adaptive Brain-Inspired Emotional Decayed Learning named Fuzzy ADBEL. Fuzzy ADBEL is a computational model that models the forgetting process and inhibitory mechanism of the emotional brain. In the model, the fuzzy decay rate simulates the forgetting process, and the stimulus and learning weights are considered as fuzzy variables trained by fuzzy learning rules. The final output of the model is evaluated by a fuzzy decision making layer that simulates the inhibitory mechanism. The proposed Fuzzy ADBEL is utilized to predict the Kp, AE and Dst indices showing opposite behaviors and characterizing the chaotic activity of the earth's magnetosphere. Experimental results show that fuzzy approaches including Fuzzy ADBEL and ANFIS (Adaptive NeuroFuzzy Inference System) reaches steady state faster than non-fuzzy approaches, ADBEL and MLP (Multilayer Perceptron). Hence, we hope the proposed model can be used in real time chaotic time series prediction.
引用
收藏
页数:7
相关论文
共 41 条
  • [1] Forecasting of short-term traffic-flow based on improved neurofuzzy models via emotional temporal difference learning algorithm
    Abdi, Javad
    Moshiri, Behzad
    Abdulhai, Baher
    Sedigh, Ali Khaki
    [J]. ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2012, 25 (05) : 1022 - 1042
  • [2] [Anonymous], CMUCS96138 PITTSB PA
  • [3] [Anonymous], 2006, AEROSP SCI TECHNOL, DOI [DOI 10.1109/IJCNN.2012.6252391, DOI 10.1016/j.ast.2005.11.002]
  • [4] Babaie T, 2008, SOFT COMPUT, V12, P857, DOI 10.1007/S00500-007-0258-8
  • [5] Real-time prediction of magnetospheric activity using the Boyle Index
    Bala, Ramkumar
    Reiff, P. H.
    Landivar, J. E.
    [J]. SPACE WEATHER-THE INTERNATIONAL JOURNAL OF RESEARCH AND APPLICATIONS, 2009, 7
  • [6] Investigating dynamical complexity in the magnetosphere using various entropy measures
    Balasis, Georgios
    Daglis, Ioannis A.
    Papadimitriou, Constantinos
    Kalimeri, Maria
    Anastasiadis, Anastasios
    Eftaxias, Konstantinos
    [J]. JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 2009, 114
  • [7] Emotional learning:: A computational model of the amygdala
    Balkenius, C
    Morén, J
    [J]. CYBERNETICS AND SYSTEMS, 2001, 32 (06) : 611 - 636
  • [8] Balkenius C., 2000, ANIMALS ANIMATS
  • [9] Beheshti Z., 2010, Int. J. Adv. Soft Comput. Appl, V2, P191
  • [10] Solar and interplanetary triggers of the largest Dst variations of the solar cycle 23
    Cerrato, Y.
    Saiz, E.
    Cid, C.
    Gonzalez, W. D.
    Palacios, J.
    [J]. JOURNAL OF ATMOSPHERIC AND SOLAR-TERRESTRIAL PHYSICS, 2012, 80 : 111 - 123