On an accurate third order implicit-explicit Runge-Kutta method for stiff problems

被引:50
作者
Boscarino, Sebastiano [1 ]
机构
[1] Univ Catania, Dept Math & Comp Sci, I-95125 Catania, Italy
关键词
Runge-Kutta methods; Order reduction; Stiff problems; PARTIAL-DIFFERENTIAL-EQUATIONS; SCHEMES; RELAXATION; SYSTEMS; ERROR;
D O I
10.1016/j.apnum.2008.10.003
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Most of the popular implicit-explicit (IMEX) Runge-Kutta (R-K) methods existing in the literature suffer front the phenomenon of order reduction in the stiff regime when applied to stiff problems containing a non-stiff term and a stiff term. Specifically, order reduction is observed when the problem becomes increasingly stiff. In this paper, our motivation is to derive a third-order IMEX R-K method for stiff problems that has a better temporal order of convergence than other well-known IMEX R-K methods. A comparison with other third-order methods shows substantial potential of this new method. (C) 2008 IMACS. Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:1515 / 1528
页数:14
相关论文
共 25 条
[1]  
[Anonymous], 1987, SPRINGER SERIES COMP
[2]   IMPLICIT EXPLICIT METHODS FOR TIME-DEPENDENT PARTIAL-DIFFERENTIAL EQUATIONS [J].
ASCHER, UM ;
RUUTH, SJ ;
WETTON, BTR .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1995, 32 (03) :797-823
[3]   Implicit-explicit Runge-Kutta methods for time-dependent partial differential equations [J].
Ascher, UM ;
Ruuth, SJ ;
Spiteri, RJ .
APPLIED NUMERICAL MATHEMATICS, 1997, 25 (2-3) :151-167
[4]  
BOSCARINO S, 2005, THESIS U CATANIA ITA
[6]   Linearly implicit Runge-Kutta methods for advection-reaction-diffusion equations [J].
Calvo, MP ;
de Frutos, J ;
Novo, J .
APPLIED NUMERICAL MATHEMATICS, 2001, 37 (04) :535-549
[7]   ON A QUASI-LINEAR PARABOLIC EQUATION OCCURRING IN AERODYNAMICS [J].
COLE, JD .
QUARTERLY OF APPLIED MATHEMATICS, 1951, 9 (03) :225-236
[8]   On the stability of implicit-explicit linear multistep methods [J].
Frank, J ;
Hundsdorfer, W ;
Verwer, JG .
APPLIED NUMERICAL MATHEMATICS, 1997, 25 (2-3) :193-205
[9]   Contractivity/monotonicity for additive Runge-Kutta methods:: Inner product norms [J].
García-Celayeta, B ;
Higueras, I ;
Roldán, T .
APPLIED NUMERICAL MATHEMATICS, 2006, 56 (06) :862-878
[10]  
HAIRER E, 1989, LECT NOTES MATH, V1409, P1