Optimal dispatching strategy of regional micro energy system with compressed air energy storage

被引:12
|
作者
Ma, Xin [1 ]
Zhang, Chenghui [1 ]
Li, Ke [1 ]
Li, Fan [1 ]
Wang, Haiyang [1 ]
Chen, Jianfei [1 ]
机构
[1] Shandong Univ, Sch Control Sci & Engn, Jinan 250061, Peoples R China
基金
中国国家自然科学基金;
关键词
Compressed air energy storage; Thermoeconomic analysis; Variable operating conditions; Optimal dispatching; Parallel computing;
D O I
10.1016/j.energy.2020.118557
中图分类号
O414.1 [热力学];
学科分类号
摘要
The regional micro energy system (RMES) can meet users' multi-energy demand and realize the accommodation of renewable energy, which makes it a very promising energy utilization scheme. This paper presents a novel RMES structure with compressed air energy storage system (CAES) as the core energy storage component. Additionally, a bi-level optimal dispatching strategy for realizing the balance between supply and demand in regional micro energy system with compressed air energy storage system is proposed for the new scheme. The upper layer optimization calculates the optimal initial value of energy state of CAES in each energy supply cycle, and the lower layer optimizes the hourly operation strategy based on the thermoeconomic characteristics. An improved thermoeconomics method was introduced to reduce the dimensionality of the optimization model and increase the computational efficiency. The addition of parallel computing methods further accelerates the model calculation speed. Case studies demonstrate the effectiveness of the method. The proposed dispatching strategy based on thermoeconomics provides theoretical support for the application of CAES in multi-energy utilization scenarios, and provides a reference for the calculation of the revenue and payback period of the RMES. (C) 2020 Published by Elsevier Ltd.
引用
收藏
页数:18
相关论文
共 50 条
  • [31] A new compressed air energy storage refrigeration system
    Wang, Shenglong
    Chen, Guangming
    Fang, Ming
    Wang, Qin
    ENERGY CONVERSION AND MANAGEMENT, 2006, 47 (18-19) : 3408 - 3416
  • [32] A new adiabatic compressed air energy storage system based on a novel compression strategy
    Huang, Shucheng
    Khajepour, Amir
    ENERGY, 2022, 242
  • [33] Bi-Level Optimal Scheduling Strategy of Integrated Energy System Considering Adiabatic Compressed Air Energy Storage and Integrated Demand Response
    Men, Jiakai
    JOURNAL OF ELECTRICAL ENGINEERING & TECHNOLOGY, 2023, 19 (01) : 97 - 111
  • [34] Review and prospect of compressed air energy storage system
    Chen, Laijun
    Zheng, Tianwen
    Mei, Shengwei
    Xue, Xiaodai
    Liu, Binhui
    Lu, Qiang
    JOURNAL OF MODERN POWER SYSTEMS AND CLEAN ENERGY, 2016, 4 (04) : 529 - 541
  • [35] Bi-Level Optimal Scheduling Strategy of Integrated Energy System Considering Adiabatic Compressed Air Energy Storage and Integrated Demand Response
    Jiakai Men
    Journal of Electrical Engineering & Technology, 2024, 19 : 97 - 111
  • [36] Optimization of Compressed Air Energy Storage System Parameters
    Liu, Guanglin
    Lu, Yuanwei
    Xu, Jinliang
    Zhang, Bing
    Zhang, Wei
    ADVANCES IN CHEMICAL, MATERIAL AND METALLURGICAL ENGINEERING, PTS 1-5, 2013, 634-638 : 787 - 791
  • [37] Design of Ocean Compressed Air Energy Storage System
    Patil, Vikram C.
    Ro, Paul, I
    2019 IEEE UNDERWATER TECHNOLOGY (UT), 2019,
  • [38] Compressed Air Energy Storage System with Burner and Ejector
    Yang, Dahui
    Wen, Xiankui
    Zhong, Jingliang
    Feng, Tingyong
    Deng, Tongtian
    Li, Xiang
    ENERGIES, 2023, 16 (01)
  • [39] Review and prospect of compressed air energy storage system
    Laijun CHEN
    Tianwen ZHENG
    Shengwei MEI
    Xiaodai XUE
    Binhui LIU
    Qiang LU
    Journal of Modern Power Systems and Clean Energy, 2016, 4 (04) : 529 - 541
  • [40] Off-design optimal control of multistage compressed air energy storage system
    Ma X.
    Li K.
    Zhang C.-H.
    Sun Y.-X.
    Kongzhi Lilun Yu Yingyong/Control Theory and Applications, 2019, 36 (03): : 436 - 442