Signals that regulate the oncogenic fate of neural stem cells and progenitors

被引:13
作者
Swartling, Fredrik J. [1 ]
Bolin, Sara [1 ]
Phillips, Joanna J. [2 ,3 ]
Persson, Anders I. [2 ,4 ]
机构
[1] Uppsala Univ, Rudbeck Lab, Dept Immunol Genet & Pathol, Uppsala, Sweden
[2] Univ Calif San Francisco, Brain Tumor Res Ctr, Dept Neurol Surg, San Francisco, CA 94143 USA
[3] Univ Calif San Francisco, Helen Diller Family Comprehens Canc Ctr, Dept Pathol, San Francisco, CA 94143 USA
[4] Univ Calif San Francisco, Sandler Neurosci Ctr, Dept Neurol, San Francisco, CA 94143 USA
基金
瑞典研究理事会;
关键词
Brain tumor; Progenitor; Neural stem cell; Glioma; Medulloblastoma; Reprogramming; miRNA; EPIDERMAL-GROWTH-FACTOR; MAINTAINS SELF-RENEWAL; INTEGRATED GENOMIC ANALYSIS; CENTRAL-NERVOUS-SYSTEM; TYROSINE KINASE GENES; SONIC HEDGEHOG; EMBRYONIC STEM; SUBVENTRICULAR ZONE; MOUSE MODEL; STEM/PROGENITOR CELLS;
D O I
10.1016/j.expneurol.2013.01.027
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Brain tumors have frequently been associated with a neural stem cell (NSC) origin and contain stem-like tumor cells, so-called brain tumor stem cells (BTSCs) that share many features with normal NSCs. A stem cell state of BTSCs confers resistance to radiotherapy and treatment with alkylating agents. It is also a hallmark of aggressive brain tumors and is maintained by transcriptional networks that are also active in embryonic stem cells. Advances in reprogramming of somatic cells into induced pluripotent stem (iPS) cells have further identified genes that drive sternness. In this review, we will highlight the possible drivers of sternness in medulloblastoma and glioma, the most frequent types of primary malignant brain cancer in children and adults, respectively. Signals that drive expansion of developmentally defined neural precursor cells are also active in corresponding brain tumors. Transcriptomal subgroups of human medulloblastoma and glioma match features of NSCs but also more restricted progenitors. Lessons from genetically-engineered mouse (GEM) models show that temporally and regionally defined NSCs can give rise to distinct subgroups of medulloblastoma and glioma. We will further discuss how acquisition of stem cell features may drive brain tumorigenesis from a non-NSC origin. Genetic alterations, signaling pathways, and therapy-induced changes in the tumor microenvironment can drive reprogramming networks and induce sternness in brain tumors. Finally, we propose a model where dysregulation of microRNAs (miRNAs) that normally provide barriers against reprogramming plays an integral role in promoting stemness in brain tumors. (C) 2013 Elsevier Inc. All rights reserved.
引用
收藏
页码:56 / 68
页数:13
相关论文
共 206 条
  • [31] The MET Oncogene Is a Functional Marker of a Glioblastoma Stem Cell Subtype
    De Bacco, Francesca
    Casanova, Elena
    Medico, Enzo
    Pellegatta, Serena
    Orzan, Francesca
    Albano, Raffaella
    Luraghi, Paolo
    Reato, Gigliola
    D'Ambrosio, Antonio
    Porrati, Paola
    Patane, Monica
    Maderna, Emanuela
    Pollo, Bianca
    Comoglio, Paolo M.
    Finocchiaro, Gaetano
    Boccaccio, Carla
    [J]. CANCER RESEARCH, 2012, 72 (17) : 4537 - 4550
  • [32] A DNA hypermethylation module for the stem/progenitor cell signature of cancer
    Easwaran, Hariharan
    Johnstone, Sarah E.
    Van Neste, Leander
    Ohm, Joyce
    Mosbruger, Tim
    Wang, Qiuju
    Aryee, Martin J.
    Joyce, Patrick
    Ahuja, Nita
    Weisenberger, Dan
    Collisson, Eric
    Zhu, Jingchun
    Yegnasubramanian, Srinivasan
    Matsui, William
    Baylin, Stephen B.
    [J]. GENOME RESEARCH, 2012, 22 (05) : 837 - 849
  • [33] Three Down and One To Go: Modeling Medulloblastoma Subgroups
    Eberhart, Charles G.
    [J]. CANCER CELL, 2012, 21 (02) : 137 - 138
  • [34] Medulloblastoma: clinicopathological correlates of SHH, WNT, and non-SHH/WNT molecular subgroups
    Ellison, David W.
    Dalton, James
    Kocak, Mehmet
    Nicholson, Sarah Leigh
    Fraga, Charles
    Neale, Geoff
    Kenney, Anna M.
    Brat, Dan J.
    Perry, Arie
    Yong, William H.
    Taylor, Roger E.
    Bailey, Simon
    Clifford, Steven C.
    Gilbertson, Richard J.
    [J]. ACTA NEUROPATHOLOGICA, 2011, 121 (03) : 381 - 396
  • [35] Increased Microglia/Macrophage Gene Expression in a Subset of Adult and Pediatric Astrocytomas
    Engler, Jane R.
    Robinson, Aaron E.
    Smirnov, Ivan
    Hodgson, J. Graeme
    Berger, Mitchel S.
    Gupta, Nalin
    James, C. David
    Molinaro, Annette
    Phillips, Joanna J.
    [J]. PLOS ONE, 2012, 7 (08):
  • [36] Notch1 and Notch2 have opposite effects on embryonal brain tumor growth
    Fan, X
    Mikolaenko, I
    Elhassan, I
    Ni, XZ
    Wang, YY
    Ball, D
    Brat, DJ
    Perry, A
    Eberhart, CG
    [J]. CANCER RESEARCH, 2004, 64 (21) : 7787 - 7793
  • [37] Normal and oncogenic roles for microRNAs in the developing brain
    Fernandez-L, Africa
    Northcott, Paul A.
    Taylor, Michael D.
    Kenney, Anna Marie
    [J]. CELL CYCLE, 2009, 8 (24) : 4049 - 4054
  • [38] Concerted microRNA control of Hedgehog signalling in cerebellar neuronal progenitor and tumour cells
    Ferretti, Elisabetta
    De Smaele, Enrico
    Miele, Evelina
    Laneve, Pietro
    Po, Agnese
    Pelloni, Marianna
    Paganelli, Arianna
    Di Marcotullio, Lucia
    Caffarelli, Elisa
    Screpanti, Isabella
    Bozzoni, Irene
    Gulino, Alberto
    [J]. EMBO JOURNAL, 2008, 27 (19) : 2616 - 2627
  • [39] MicroRNAs Potentiate Neural Development
    Fineberg, Sarah K.
    Kosik, Kenneth S.
    Davidson, Beverly L.
    [J]. NEURON, 2009, 64 (03) : 303 - 309
  • [40] Forsberg-Nilsson K, 1998, J NEUROSCI RES, V53, P521, DOI 10.1002/(SICI)1097-4547(19980901)53:5<521::AID-JNR2>3.0.CO