Efficient photocatalytic hydrogen production using an NH4TiOF3/TiO2/g-C3N4 composite with a 3D camellia-like Z-scheme heterojunction structure

被引:22
作者
Lv, Bo [1 ]
Lu, Lili [2 ]
Feng, Xuefan [1 ]
Wu, Xiaoping [3 ]
Wang, Xiaoming [1 ]
Zou, Xiong [1 ]
Zhang, Fuqin [1 ]
机构
[1] Cent South Univ, Natl Key Lab Sci & Technol High Strength Struct M, Changsha 410083, Peoples R China
[2] Cent South Univ, State Key Lab Powder Met, Changsha 410083, Peoples R China
[3] State Key Lab Vanadium & Titanium Resources Compr, Panzhihua 617000, Peoples R China
关键词
Photocatalytic hydrogen; Composites; 3D camellia-like; Z-scheme; IN-SITU SYNTHESIS; G-C3N4/TIO2; NANOSHEETS; TIO2; NANOPARTICLES; PERFORMANCE; SEPARATION; NANOTUBES; EVOLUTION; GRAPHENE; RATIOS; ENERGY;
D O I
10.1016/j.ceramint.2020.07.141
中图分类号
TQ174 [陶瓷工业]; TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Photocatalysis is one of the most promising ways to realize artificial photosynthesis. The biologically inspired photocatalysts with 3D flower-like structures have attracted much attention. In this study, an effective method for the synthesis of composite photocatalytic material, NH4TiOF3/TiO2/g-C3N4, with a 3D camellia-like structure, was developed. The 3D hierarchical structure of the composite material enabled multiple refractions and reflections of light within the catalyst, which greatly improved the efficiency of the sunlight harvesting. The combination of NH4TiOF3 and TiO2 also effectively reduced the electron-hole recombination in the g-C3N4. To evaluate its photocatalytic performance, the prepared nanostructured composite materials were tested for the water-splitting with simulated sunlight. It showed the hydrogen evolution at the rate of 3.6 mmol/g/h, which is 4.0 times faster than that from the pure g-C3N4. The composite materials exhibited excellent cycling stability. The detailed mechanism of the Z-scheme heterojunction was also discussed. The proposed synthesis route for the creation of 3D flower-like hierarchical composites provides a new effective technique for developing efficient, active, and stable composite photocatalysts for hydrogen production.
引用
收藏
页码:26689 / 26697
页数:9
相关论文
共 50 条
  • [11] Z-scheme based fabrication of Cu2CdSnS4/Au/g-C3N4 ternary heterojunction with enhanced photocatalytic hydrogen production
    Kamalakannan, Saravanan
    Balasubramaniyan, Natarajan
    Neppolian, Bernaurdshaw
    OPTICAL MATERIALS, 2025, 164
  • [12] Direct electrospinning method for the construction of Z-scheme TiO2/g-C3N4/RGO ternary heterojunction photocatalysts with remarkably ameliorated photocatalytic performance
    Hu, Liming
    Yan, Juntao
    Wang, Chunlei
    Chai, Bo
    Li, Jianfen
    CHINESE JOURNAL OF CATALYSIS, 2019, 40 (03) : 458 - 469
  • [13] Photocatalytic overall water splitting by Z-scheme g-C3N4/BiFeO3 heterojunction
    Sepahvand, Hadis
    Sharifnia, Shahram
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2019, 44 (42) : 23658 - 23668
  • [14] Enhanced photocatalytic performance of Z-scheme TiO2/g-C3N4 heterojunction towards degradation of Rhodamine B
    Yang, Y.
    Wang, D. Y.
    Zhang, Y. C.
    Chen, S. Y.
    Sun, Y.
    DIGEST JOURNAL OF NANOMATERIALS AND BIOSTRUCTURES, 2022, 17 (04) : 1491 - 1500
  • [15] 2D/2D g-C3N4/(001)-TiO2 Z-scheme heterojunction decorated with CQDs for enhanced Photocatalytic activity
    Wang, Yueying
    Chen, Jin
    Yang, Xiaofeng
    Liu, Xinwei
    Que, Meidan
    Ma, Yuzhao
    Li, Yanjun
    MATERIALS TODAY COMMUNICATIONS, 2023, 37
  • [16] G-C3N4 Nanosheets Coupled with TiO2 Nanosheets as 2D/2D Heterojunction Photocatalysts Toward High Photocatalytic Activity for Hydrogen Production
    Yang, Yuhao
    Li, Xiaolong
    Lu, Chan
    Huang, Wenhuan
    CATALYSIS LETTERS, 2019, 149 (10) : 2930 - 2939
  • [17] In-situ synthesis of Z-scheme V2O3/S-doped g-C3N4 heterojunction for enhanced photocatalytic hydrogen production
    Wu, Chengying
    Xu, Zhengrong
    Zhao, Jing
    Liu, Rui
    APPLIED SURFACE SCIENCE, 2024, 654
  • [18] Z-Scheme g-C3N4/Bi4NbO8Cl Heterojunction for Enhanced Photocatalytic Hydrogen Production
    You, Yong
    Wang, Shuobo
    Xiao, Ke
    Ma, Tianyi
    Zhang, Yihe
    Huang, Hongwei
    ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2018, 6 (12): : 16219 - 16227
  • [19] Direct Z-scheme CoS/g-C3N4 heterojunction with NiS co-catalyst for efficient photocatalytic hydrogen generation
    Bi, Zhe-xu
    Guo, Rui-tang
    Hu, Xing
    Wang, Juan
    Chen, Xin
    Pan, Wei-guo
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2022, 47 (81) : 34430 - 34443
  • [20] Attapulgite-intercalated g-C3N4/ZnIn2S4 3D hierarchical Z-scheme heterojunction for boosting photocatalytic hydrogen production
    Wang, Bichen
    Huang, Liangliang
    Peng, Tao
    Wang, Rui
    Jin, Jun
    Wang, Huanwen
    He, Beibei
    Gong, Yansheng
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2024, 675 : 52 - 63