Application of the thermodynamic extremal principle to phase-field modeling of non-equilibrium solidification in multi-component alloys

被引:13
作者
Zhang, Xiao [1 ]
Wang, Haifeng [1 ]
Kuang, Wangwang [1 ]
Zhang, Jianbao [1 ]
机构
[1] Northwestern Polytech Univ, State Key Lab Solidificat Proc, Xian 710072, Shaanxi, Peoples R China
关键词
Phase-field model; Thermodynamic extremal principle; Multi-component alloys; Solidification; Kinetics; ENTROPY PRODUCTION PRINCIPLE; RAPID SOLIDIFICATION; BOUNDARY MOTION; SOLUTE DRAG; INTERFACE; DIFFUSION; GROWTH; DISSIPATION; SYSTEM;
D O I
10.1016/j.actamat.2017.02.026
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Modeling of non-equilibrium solidification in multi-component alloys is of singular importance in microstructure control, which however owing to the complex systems with complex additional constraints is still an open problem. In this work, the thermodynamic extremal principle was applied to solve the complex additional constraints self-consistently in thermodynamics. Consequently, short-range solute redistribution and long-range solute diffusion that share the same mobility are integrated naturally into the solute diffusion equations, thus avoiding the introduction of additional kinetic coefficients (e.g. interface permeability) to describe solute redistribution. Application to the non-equilibrium solidification of Al-Si-Cu alloys shows that anomalous solute trapping and anomalous solute profiles within the diffuse interface could occur, thus highlighting the important effect of the interaction among the component elements on the interface kinetics. The current phase-field model might be preferred for simulations not only because of its simplest form of evolution equations but also its feasibility to increase the simulation efficiency by the "thin interface limit" analysis. (C) 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:258 / 269
页数:12
相关论文
共 56 条
[1]   MICROSCOPIC THEORY FOR ANTIPHASE BOUNDARY MOTION AND ITS APPLICATION TO ANTIPHASE DOMAIN COARSENING [J].
ALLEN, SM ;
CAHN, JW .
ACTA METALLURGICA, 1979, 27 (06) :1085-1095
[2]   CONTINUOUS GROWTH-MODEL FOR INTERFACE MOTION DURING ALLOY SOLIDIFICATION [J].
AZIZ, MJ ;
KAPLAN, T .
ACTA METALLURGICA, 1988, 36 (08) :2335-2347
[3]  
Baker J.W., 1970, THESIS
[4]   SOLUTE TRAPPING BY RAPID SOLIDIFICATION [J].
BAKER, JC ;
CAHN, JW .
ACTA METALLURGICA, 1969, 17 (05) :575-&
[5]   Kinetic cross coupling between nonconserved and conserved fields in phase field models [J].
Brener, Efim A. ;
Boussinot, G. .
PHYSICAL REVIEW E, 2012, 86 (05)
[6]   FREE ENERGY OF A NONUNIFORM SYSTEM .1. INTERFACIAL FREE ENERGY [J].
CAHN, JW ;
HILLIARD, JE .
JOURNAL OF CHEMICAL PHYSICS, 1958, 28 (02) :258-267
[7]   Microstructural development in equiatomic multicomponent alloys [J].
Cantor, B ;
Chang, ITH ;
Knight, P ;
Vincent, AJB .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2004, 375 :213-218
[8]   A phase field model for isothermal solidification of multicomponent alloys [J].
Cha, PR ;
Yeon, DH ;
Yoon, JK .
ACTA MATERIALIA, 2001, 49 (16) :3295-3307
[9]   Interdiffusion in the FCC-structured Al-Co-Cr-Fe-Ni high entropy alloys: Experimental studies and numerical simulations [J].
Dabrowa, Juliusz ;
Kucza, Witold ;
Cieslak, Grzegorz ;
Kulik, Tadeusz ;
Danielewski, Marek ;
Yeh, Jien-Wei .
JOURNAL OF ALLOYS AND COMPOUNDS, 2016, 674 :455-462
[10]   SGTE DATA FOR PURE ELEMENTS [J].
DINSDALE, AT .
CALPHAD-COMPUTER COUPLING OF PHASE DIAGRAMS AND THERMOCHEMISTRY, 1991, 15 (04) :317-425