Resolution of Genetic Map Expansion Caused by Excess Heterozygosity in Plant Recombinant Inbred Populations

被引:21
作者
Truong, Sandra K. [1 ,2 ]
McCormick, Ryan F. [1 ,2 ]
Morishige, Daryl T. [2 ]
Mullet, John E. [1 ,2 ]
机构
[1] Texas A&M Univ, Interdisciplinary Program Genet, College Stn, TX 77843 USA
[2] Texas A&M Univ, Dept Biochem & Biophys, College Stn, TX 77843 USA
来源
G3-GENES GENOMES GENETICS | 2014年 / 4卷 / 10期
关键词
plant recombinant inbred lines; excess heterozygosity; genetic map construction; genetic map expansion; R/qtl; SHOWING SEGREGATION DISTORTION; MAXIMUM-LIKELIHOOD MODELS; DNA-SEQUENCING DATA; CYTOGENETIC MAPS; PHYSICAL MAPS; SORGHUM; MARKERS; GENOME; L; LINKAGE;
D O I
10.1534/g3.114.012468
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Recombinant inbred populations of many plant species exhibit more heterozygosity than expected under the Mendelian model of segregation. This segregation distortion causes the overestimation of recombination frequencies and consequent genetic map expansion. Here we build upon existing genetic models of differential zygotic viability to model a heterozygote fitness term and calculate expected genotypic proportions in recombinant inbred populations propagated by selfing. We implement this model using the existing open-source genetic map construction code base for R/qtl to estimate recombination fractions. Finally, we show that accounting for excess heterozygosity in a sorghum recombinant inbred mapping population shrinks the genetic map by 213 cM (a 13% decrease corresponding to 4.26 fewer recombinations per meiosis). More accurate estimates of linkage benefit linkage-based analyses used in the identification and utilization of causal genetic variation.
引用
收藏
页码:1963 / 1969
页数:7
相关论文
共 38 条
  • [1] Anderson LK, 2003, GENETICS, V165, P849
  • [2] [Anonymous], 2010, MATL VERS 7 10 0 R20
  • [3] Characterization of human crossover interference
    Broman, KW
    Weber, JL
    [J]. AMERICAN JOURNAL OF HUMAN GENETICS, 2000, 66 (06) : 1911 - 1926
  • [4] Comprehensive human genetic maps: Individual and sex-specific variation in recombination
    Broman, KW
    Murray, JC
    Sheffield, VC
    White, RL
    Weber, JL
    [J]. AMERICAN JOURNAL OF HUMAN GENETICS, 1998, 63 (03) : 861 - 869
  • [5] R/qtl: QTL mapping in experimental crosses
    Broman, KW
    Wu, H
    Sen, S
    Churchill, GA
    [J]. BIOINFORMATICS, 2003, 19 (07) : 889 - 890
  • [6] Bulmer M.G., 1980, The mathematical theory of quantitative genetics
  • [7] Registration of the BTx623/IS3620C Recombinant Inbred Mapping Population of Sorghum
    Burow, G. B.
    Klein, R. R.
    Franks, C. D.
    Klein, P. E.
    Schertz, K. F.
    Pederson, G. A.
    Xin, Z.
    Burke, J. J.
    [J]. JOURNAL OF PLANT REGISTRATIONS, 2011, 5 (01) : 141 - 145
  • [8] Integrated consensus genetic and physical maps of flax (Linum usitatissimum L.)
    Cloutier, Sylvie
    Ragupathy, Raja
    Miranda, Evelyn
    Radovanovic, Natasa
    Reimer, Elsa
    Walichnowski, Andrzej
    Ward, Kerry
    Rowland, Gordon
    Duguid, Scott
    Banik, Mitali
    [J]. THEORETICAL AND APPLIED GENETICS, 2012, 125 (08) : 1783 - 1795
  • [9] A framework for variation discovery and genotyping using next-generation DNA sequencing data
    DePristo, Mark A.
    Banks, Eric
    Poplin, Ryan
    Garimella, Kiran V.
    Maguire, Jared R.
    Hartl, Christopher
    Philippakis, Anthony A.
    del Angel, Guillermo
    Rivas, Manuel A.
    Hanna, Matt
    McKenna, Aaron
    Fennell, Tim J.
    Kernytsky, Andrew M.
    Sivachenko, Andrey Y.
    Cibulskis, Kristian
    Gabriel, Stacey B.
    Altshuler, David
    Daly, Mark J.
    [J]. NATURE GENETICS, 2011, 43 (05) : 491 - +
  • [10] A comprehensive genetic map of the human genome based on 5,264 microsatellites
    Dib, C
    Faure, S
    Fizames, C
    Samson, D
    Drouot, N
    Vignal, A
    Millasseau, P
    Marc, S
    Hazan, J
    Seboun, E
    Lathrop, M
    Gyapay, G
    Morissette, J
    Weissenbach, J
    [J]. NATURE, 1996, 380 (6570) : 152 - 154