Acetonitrile Transition Metal Interfaces from First Principles

被引:16
|
作者
Ludwig, Thomas [1 ,2 ]
Singh, Aayush R. [1 ,2 ]
Norskov, Jens K. [3 ]
机构
[1] SUNCAT Ctr Inteiface Sci & Catalysis, SLAC Natl Accelerator Lab, Menlo Pk, CA 94025 USA
[2] Stanford Univ, SUNCAT Ctr Inteiface Sci & Catalysis, Dept Chem Engn, Stanford, CA 94305 USA
[3] Tech Univ Denmark, Dept Phys, DK-2800 Lyngby, Denmark
来源
JOURNAL OF PHYSICAL CHEMISTRY LETTERS | 2020年 / 11卷 / 22期
基金
美国能源部;
关键词
Transition metals;
D O I
10.1021/acs.jpclett.0c02692
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Acetonitrile is among the most commonly used nonaqueous solvents in catalysis and electrochemistry. We study its interfaces with multiple facets of the metals Ag, Cu, Pt, and Rh using density functional theory calculations; the structures reported shed new light on experimental observations and underscore the importance of solvent-solvent interactions at high coverage. We investigate the relationship of potential of zero charge (PZC) to metal work function, reporting results in agreement with experimental measurements. We develop a model to explain the effects of solvent chemisorption and orientation on the PZC to within a mean absolute deviation of 0.08-0.12 V for all facets studied. Our electrostatic field dependent phase diagram agrees with spectroscopic observations and sheds new light on electrostatic field effects. This work provides new insight into experimental observations on acetonitrile metal interfaces and provides guidance for future studies of acetonitrile and other nonaqueous solvent interfaces with transition metals.
引用
收藏
页码:9802 / 9811
页数:10
相关论文
共 50 条
  • [31] SPATIALLY-RESOLVED ELECTRON-ENERGY-LOSS STUDIES OF METAL-CERAMIC INTERFACES IN TRANSITION-METAL ALUMINA CERMETS
    BRYDSON, R
    MULLEJANS, H
    BRULEY, J
    TRUSTY, PA
    SUN, X
    YEOMANS, JA
    RUHLE, M
    JOURNAL OF MICROSCOPY-OXFORD, 1995, 177 : 369 - 386
  • [32] Electrochemiluminescence of a First-Row d6 Transition Metal Complex
    Doeven, Egan H.
    Connell, Timothy U.
    Sinha, Narayan
    Wenger, Oliver S.
    Francis, Paul S.
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2024, 63 (21)
  • [33] Effect of metal doping on structural characteristics of amorphous carbon system: A first-principles study
    Li, Xiaowei
    Zhang, Dong
    Lee, Kwang-Ryeol
    Wang, Aiying
    THIN SOLID FILMS, 2016, 607 : 67 - 72
  • [34] Structural and thermodynamic properties of Os from first-principles calculations
    Liu, Chun-Mei
    Cheng, Yan
    Zhu, Bo
    Ji, Guang-Fu
    PHYSICA B-CONDENSED MATTER, 2011, 406 (11) : 2110 - 2115
  • [35] Large magnetoelastic effects in paramagnetic stainless steels from first principles
    Vitos, L.
    Johansson, B.
    PHYSICAL REVIEW B, 2009, 79 (02):
  • [36] Frist-Principles Study of Hydrogen Atom Diffusion on Transition Metal doped Mg(0001) Surface
    Wang, Zhi-wen
    Guo, Xin-jun
    Yuan, Wei
    Ding, Zhi-yan
    EIGHTH CHINA NATIONAL CONFERENCE ON FUNCTIONAL MATERIALS AND APPLICATIONS, 2014, 873 : 101 - 109
  • [37] Electronic structure of transition metal-isocorrole complexes: A first quantum chemical study
    van Oort, B
    Tangen, E
    Ghosh, A
    EUROPEAN JOURNAL OF INORGANIC CHEMISTRY, 2004, (12) : 2442 - 2445
  • [38] Tailoring of the band gap in transition metal-doped ZnO: First Principle Calculations
    Khalid, Muhammad
    Riaz, Saira
    Naseem, Shahzad
    MATERIALS TODAY-PROCEEDINGS, 2015, 2 (10) : 5246 - 5250
  • [39] Recent Advances in First-Row Transition Metal Clusters for Photocatalytic Water Splitting
    Chen, Rong
    Yan, Zhi-Hao
    Kong, Xiang-Jian
    CHEMPHOTOCHEM, 2020, 4 (03) : 157 - 167
  • [40] First principles band-gap calculations of 3d transition metals-added ZnO
    Ashraf, Muhammad
    Ahmad, Afaq
    MATERIALS TODAY-PROCEEDINGS, 2015, 2 (10) : 5128 - 5131