Inverse problem for a nonlinear Helmholtz equation

被引:10
作者
Jalade, E [1 ]
机构
[1] Univ Aix Marseille 1, CMI, UMR 6632, F-13453 Marseille 13, France
来源
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE | 2004年 / 21卷 / 04期
关键词
nonlinear Helmholtz equation; inverse problem;
D O I
10.1016/j.anihpc.2003.07.001
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper is devoted to the uniqueness of the coefficients theta, phi is an element of L-infinity(R-3), and psi is an element of L-infinity(R-3, R-3) for the nonlinear Helmholtz equations -Deltav(x) - k(2)v(x) = theta(x)v(x)F(\v(x)\) and -Deltav(x) - k(2)v(x) = (phi(x)v(x) + ipsi(x). delv(x))\delv(x)\(r) \v(x)\(5). For small values of),, a solution v is uniquely constructed by adding a small outgoing perturbation to the plane wave x --> lambdae(ikx.d), where \d\ = 1 and lambda greater than or equal to 0. We can write v = v(x, lambda, d) = lambdae(ikx.d) + u(infinity)(s) (x/\x\, d, lambda)e(ik\x\) /\x\ + O(1/\x\(2)) for large \x\. For a fixed k > 0, weyould like to prove that theta, phi and div psi can be uniquely reconstructed from the behaviour of u(infinity)(s) (x/\x\, d, lambda) as lambda --> 0. We prove the uniqueness in this paper. (C) 2003 Elsevier SAS. All rights reserved.
引用
收藏
页码:517 / 531
页数:15
相关论文
共 7 条
[1]  
Colton D., 1998, INVERSE ACOUSTIC ELE
[2]  
Hormander L., 1983, Fundamental Principles of Mathematical Sciences, V257
[3]   GLOBAL UNIQUENESS FOR A 2-DIMENSIONAL SEMILINEAR ELLIPTIC INVERSE PROBLEM [J].
ISAKOV, V ;
NACHMAN, AI .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1995, 347 (09) :3375-3390
[4]   GLOBAL UNIQUENESS FOR A SEMILINEAR ELLIPTIC INVERSE PROBLEM [J].
ISAKOV, V ;
SYLVESTER, J .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1994, 47 (10) :1403-1410
[5]   RECONSTRUCTIONS FROM BOUNDARY MEASUREMENTS [J].
NACHMAN, AI .
ANNALS OF MATHEMATICS, 1988, 128 (03) :531-576
[6]  
STRAUSS WA, 1974, SCATTERING THEORY MA
[7]   Inverse scattering for the nonlinear Schrodinger equation - II. Reconstruction of the potential and the nonlinearity in the multidimensional case [J].
Weder, R .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2001, 129 (12) :3637-3645