EXISTENCE OF NONTRIVIAL SOLUTIONS FOR A PERTURBATION OF CHOQUARD EQUATION WITH HARDY-LITTLEWOOD-SOBOLEV UPPER CRITICAL EXPONENT

被引:0
作者
Su, Yu [1 ,2 ]
Chen, Haibo [1 ]
机构
[1] Cent S Univ, Sch Math & Stat, Changsha 410083, Hunan, Peoples R China
[2] Xinjiang Normal Univ, Sch Math Sci, Urumqi 830054, Xinjiang, Peoples R China
基金
中国国家自然科学基金;
关键词
Hardy-Littlewood-Sobolev upper critical exponent; Choquard equation; SYMMETRIC-SOLUTIONS; ELLIPTIC-EQUATIONS; POSITIVE SOLUTIONS;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article, we consider the problem -Delta u = (integral(RN) vertical bar u vertical bar(2)*mu/vertical bar x-y vertical bar(mu) dy) vertical bar u vertical bar(2)mu*(-2)+ f(x, u) in R-N, where N >= 3, mu is an element of(0, N) and 2(mu)* = 2N-mu/N-2. Under suitable assumptions on f (x, u), we establish the existence and non-existence of nontrivial solutions via the variational method.
引用
收藏
页数:25
相关论文
共 50 条
[41]   Nontrivial Solutions for a Choquard Equation Involving the Hardy Potential and Critical Nonlinearity [J].
Guo, Ting ;
Gui, Shuting ;
Tang, Xianhua .
JOURNAL OF GEOMETRIC ANALYSIS, 2025, 35 (08)
[42]   MULTIPLE SOLUTIONS FOR A CLASS OF KIRCHHOFF TYPE EQUATIONS WITH ZERO MASS AND HARDY-LITTLEWOOD-SOBOLEV CRITICAL NONLINEARITY [J].
Wei, Chongqing ;
Li, Anran .
JOURNAL OF NONLINEAR AND VARIATIONAL ANALYSIS, 2024, 8 (01) :23-39
[43]   MULTIPLICITY AND CONCENTRATION OF SOLUTIONS TO A SINGULAR CHOQUARD EQUATION WITH CRITICAL SOBOLEV EXPONENT [J].
Yu, Shengbin ;
Chen, Jianqing .
JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2025, 15 (01) :110-136
[44]   LEAST ENERGY SOLUTIONS FOR COUPLED HARTREE SYSTEM WITH HARDY-LITTLEWOOD-SOBOLEV CRITICAL EXPONENTS [J].
Zheng, Yu ;
Santos, Carlos A. ;
Shen, Zifei ;
Yang, Minbo .
COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2020, 19 (01) :329-369
[45]   Hardy-Littlewood-Sobolev inequality and existence of the extremal functions with extended kernel [J].
Liu, Zhao .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2023, 153 (05) :1683-1705
[46]   Existence of solutions for elliptic equation with critical Sobolev exponent [J].
Xiu, Zonghu .
MECHATRONICS AND APPLIED MECHANICS II, PTS 1 AND 2, 2013, 300-301 :1205-1208
[47]   Choquard-type equations with Hardy-Littlewood Sobolev upper-critical growth [J].
Cassani, Daniele ;
Zhang, Jianjun .
ADVANCES IN NONLINEAR ANALYSIS, 2019, 8 (01) :1184-1212
[48]   The existence of multiple solutions for a class of upper critical Choquard equation in a bounded domain [J].
Chen, Yongpeng ;
Yang, Zhipeng .
DEMONSTRATIO MATHEMATICA, 2024, 57 (01)
[49]   Existence of a Positive Solution for a Class of Choquard Equation with Upper Critical Exponent [J].
Pan, Hui-Lan ;
Liu, Jiu ;
Tang, Chun-Lei .
DIFFERENTIAL EQUATIONS AND DYNAMICAL SYSTEMS, 2022, 30 (01) :51-59
[50]   Existence of a Positive Solution for a Class of Choquard Equation with Upper Critical Exponent [J].
Hui-Lan Pan ;
Jiu Liu ;
Chun-Lei Tang .
Differential Equations and Dynamical Systems, 2022, 30 :51-59